Identifier
Values
[[],[],[]] => [[[.,.],.],.] => [.,[[.,.],.]] => ([(0,2),(2,1)],3) => 3
[[],[[]]] => [[.,.],[.,.]] => [[[.,.],.],.] => ([(0,2),(2,1)],3) => 3
[[[]],[]] => [[.,[.,.]],.] => [.,[.,[.,.]]] => ([(0,2),(2,1)],3) => 3
[[[],[]]] => [.,[[.,.],.]] => [[.,[.,.]],.] => ([(0,2),(2,1)],3) => 3
[[],[],[],[]] => [[[[.,.],.],.],.] => [.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => 4
[[],[],[[]]] => [[[.,.],.],[.,.]] => [[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => 4
[[[]],[],[]] => [[[.,[.,.]],.],.] => [.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => 4
[[[]],[[]]] => [[.,[.,.]],[.,.]] => [[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => 4
[[[],[]],[]] => [[.,[[.,.],.]],.] => [.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => 4
[[[[]]],[]] => [[.,[.,[.,.]]],.] => [.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => 4
[[[],[],[]]] => [.,[[[.,.],.],.]] => [[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 4
[[[[]],[]]] => [.,[[.,[.,.]],.]] => [[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => 4
[[],[],[],[],[]] => [[[[[.,.],.],.],.],.] => [.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[],[],[],[[]]] => [[[[.,.],.],.],[.,.]] => [[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[]],[],[],[]] => [[[[.,[.,.]],.],.],.] => [.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[]],[],[[]]] => [[[.,[.,.]],.],[.,.]] => [[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[],[]],[],[]] => [[[.,[[.,.],.]],.],.] => [.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[]]],[],[]] => [[[.,[.,[.,.]]],.],.] => [.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[],[]],[[]]] => [[.,[[.,.],.]],[.,.]] => [[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[]]],[[]]] => [[.,[.,[.,.]]],[.,.]] => [[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[],[],[]],[]] => [[.,[[[.,.],.],.]],.] => [.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[]],[]],[]] => [[.,[[.,[.,.]],.]],.] => [.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[],[]]],[]] => [[.,[.,[[.,.],.]]],.] => [.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[[]]]],[]] => [[.,[.,[.,[.,.]]]],.] => [.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[],[],[],[]]] => [.,[[[[.,.],.],.],.]] => [[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[]],[],[]]] => [.,[[[.,[.,.]],.],.]] => [[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[],[]],[]]] => [.,[[.,[[.,.],.]],.]] => [[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[[[[]]],[]]] => [.,[[.,[.,[.,.]]],.]] => [[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[[],[],[],[],[],[]] => [[[[[[.,.],.],.],.],.],.] => [.,[[[[[.,.],.],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[],[],[],[],[[]]] => [[[[[.,.],.],.],.],[.,.]] => [[[[[[.,.],.],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[]],[],[],[],[]] => [[[[[.,[.,.]],.],.],.],.] => [.,[[[[.,[.,.]],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[]],[],[],[[]]] => [[[[.,[.,.]],.],.],[.,.]] => [[[[[.,[.,.]],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[],[]],[],[],[]] => [[[[.,[[.,.],.]],.],.],.] => [.,[[[.,[[.,.],.]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[]]],[],[],[]] => [[[[.,[.,[.,.]]],.],.],.] => [.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[],[]],[],[[]]] => [[[.,[[.,.],.]],.],[.,.]] => [[[[.,[[.,.],.]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[]]],[],[[]]] => [[[.,[.,[.,.]]],.],[.,.]] => [[[[.,[.,[.,.]]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[],[],[]],[],[]] => [[[.,[[[.,.],.],.]],.],.] => [.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[]],[]],[],[]] => [[[.,[[.,[.,.]],.]],.],.] => [.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[],[]]],[],[]] => [[[.,[.,[[.,.],.]]],.],.] => [.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[]]]],[],[]] => [[[.,[.,[.,[.,.]]]],.],.] => [.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[],[],[]],[[]]] => [[.,[[[.,.],.],.]],[.,.]] => [[[.,[[[.,.],.],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[]],[]],[[]]] => [[.,[[.,[.,.]],.]],[.,.]] => [[[.,[[.,[.,.]],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[],[]]],[[]]] => [[.,[.,[[.,.],.]]],[.,.]] => [[[.,[.,[[.,.],.]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[]]]],[[]]] => [[.,[.,[.,[.,.]]]],[.,.]] => [[[.,[.,[.,[.,.]]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[],[],[],[]],[]] => [[.,[[[[.,.],.],.],.]],.] => [.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[]],[],[]],[]] => [[.,[[[.,[.,.]],.],.]],.] => [.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[],[]],[]],[]] => [[.,[[.,[[.,.],.]],.]],.] => [.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[]]],[]],[]] => [[.,[[.,[.,[.,.]]],.]],.] => [.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[],[],[]]],[]] => [[.,[.,[[[.,.],.],.]]],.] => [.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[]],[]]],[]] => [[.,[.,[[.,[.,.]],.]]],.] => [.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[],[]]]],[]] => [[.,[.,[.,[[.,.],.]]]],.] => [.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[[]]]]],[]] => [[.,[.,[.,[.,[.,.]]]]],.] => [.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[],[],[],[],[]]] => [.,[[[[[.,.],.],.],.],.]] => [[.,[[[[.,.],.],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[]],[],[],[]]] => [.,[[[[.,[.,.]],.],.],.]] => [[.,[[[.,[.,.]],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[],[]],[],[]]] => [.,[[[.,[[.,.],.]],.],.]] => [[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[]]],[],[]]] => [.,[[[.,[.,[.,.]]],.],.]] => [[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[],[],[]],[]]] => [.,[[.,[[[.,.],.],.]],.]] => [[.,[.,[[[.,.],.],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[]],[]],[]]] => [.,[[.,[[.,[.,.]],.]],.]] => [[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[],[]]],[]]] => [.,[[.,[.,[[.,.],.]]],.]] => [[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[[[[[]]]],[]]] => [.,[[.,[.,[.,[.,.]]]],.]] => [[.,[.,[.,[.,[.,.]]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[[],[],[],[],[],[],[]] => [[[[[[[.,.],.],.],.],.],.],.] => [.,[[[[[[.,.],.],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[],[],[],[],[],[[]]] => [[[[[[.,.],.],.],.],.],[.,.]] => [[[[[[[.,.],.],.],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[]],[],[],[],[],[]] => [[[[[[.,[.,.]],.],.],.],.],.] => [.,[[[[[.,[.,.]],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[]],[],[],[],[[]]] => [[[[[.,[.,.]],.],.],.],[.,.]] => [[[[[[.,[.,.]],.],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[],[]],[],[],[],[]] => [[[[[.,[[.,.],.]],.],.],.],.] => [.,[[[[.,[[.,.],.]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[]]],[],[],[],[]] => [[[[[.,[.,[.,.]]],.],.],.],.] => [.,[[[[.,[.,[.,.]]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[],[]],[],[],[[]]] => [[[[.,[[.,.],.]],.],.],[.,.]] => [[[[[.,[[.,.],.]],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[]]],[],[],[[]]] => [[[[.,[.,[.,.]]],.],.],[.,.]] => [[[[[.,[.,[.,.]]],.],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[],[],[]],[],[],[]] => [[[[.,[[[.,.],.],.]],.],.],.] => [.,[[[.,[[[.,.],.],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[]],[]],[],[],[]] => [[[[.,[[.,[.,.]],.]],.],.],.] => [.,[[[.,[[.,[.,.]],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[]]],[],[],[]] => [[[[.,[.,[[.,.],.]]],.],.],.] => [.,[[[.,[.,[[.,.],.]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]]]],[],[],[]] => [[[[.,[.,[.,[.,.]]]],.],.],.] => [.,[[[.,[.,[.,[.,.]]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[],[],[]],[],[[]]] => [[[.,[[[.,.],.],.]],.],[.,.]] => [[[[.,[[[.,.],.],.]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[]],[]],[],[[]]] => [[[.,[[.,[.,.]],.]],.],[.,.]] => [[[[.,[[.,[.,.]],.]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[]]],[],[[]]] => [[[.,[.,[[.,.],.]]],.],[.,.]] => [[[[.,[.,[[.,.],.]]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]]]],[],[[]]] => [[[.,[.,[.,[.,.]]]],.],[.,.]] => [[[[.,[.,[.,[.,.]]]],.],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[],[],[],[]],[],[]] => [[[.,[[[[.,.],.],.],.]],.],.] => [.,[[.,[[[[.,.],.],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[]],[],[]],[],[]] => [[[.,[[[.,[.,.]],.],.]],.],.] => [.,[[.,[[[.,[.,.]],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[]],[]],[],[]] => [[[.,[[.,[[.,.],.]],.]],.],.] => [.,[[.,[[.,[[.,.],.]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]]],[]],[],[]] => [[[.,[[.,[.,[.,.]]],.]],.],.] => [.,[[.,[[.,[.,[.,.]]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[],[]]],[],[]] => [[[.,[.,[[[.,.],.],.]]],.],.] => [.,[[.,[.,[[[.,.],.],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]],[]]],[],[]] => [[[.,[.,[[.,[.,.]],.]]],.],.] => [.,[[.,[.,[[.,[.,.]],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[],[]]]],[],[]] => [[[.,[.,[.,[[.,.],.]]]],.],.] => [.,[[.,[.,[.,[[.,.],.]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[]]]]],[],[]] => [[[.,[.,[.,[.,[.,.]]]]],.],.] => [.,[[.,[.,[.,[.,[.,.]]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[],[],[],[]],[[]]] => [[.,[[[[.,.],.],.],.]],[.,.]] => [[[.,[[[[.,.],.],.],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[]],[],[]],[[]]] => [[.,[[[.,[.,.]],.],.]],[.,.]] => [[[.,[[[.,[.,.]],.],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[]],[]],[[]]] => [[.,[[.,[[.,.],.]],.]],[.,.]] => [[[.,[[.,[[.,.],.]],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]]],[]],[[]]] => [[.,[[.,[.,[.,.]]],.]],[.,.]] => [[[.,[[.,[.,[.,.]]],.]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[],[]]],[[]]] => [[.,[.,[[[.,.],.],.]]],[.,.]] => [[[.,[.,[[[.,.],.],.]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]],[]]],[[]]] => [[.,[.,[[.,[.,.]],.]]],[.,.]] => [[[.,[.,[[.,[.,.]],.]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[],[]]]],[[]]] => [[.,[.,[.,[[.,.],.]]]],[.,.]] => [[[.,[.,[.,[[.,.],.]]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[]]]]],[[]]] => [[.,[.,[.,[.,[.,.]]]]],[.,.]] => [[[.,[.,[.,[.,[.,.]]]]],.],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[],[],[],[],[]],[]] => [[.,[[[[[.,.],.],.],.],.]],.] => [.,[.,[[[[[.,.],.],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[]],[],[],[]],[]] => [[.,[[[[.,[.,.]],.],.],.]],.] => [.,[.,[[[[.,[.,.]],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[]],[],[]],[]] => [[.,[[[.,[[.,.],.]],.],.]],.] => [.,[.,[[[.,[[.,.],.]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]]],[],[]],[]] => [[.,[[[.,[.,[.,.]]],.],.]],.] => [.,[.,[[[.,[.,[.,.]]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[],[]],[]],[]] => [[.,[[.,[[[.,.],.],.]],.]],.] => [.,[.,[[.,[[[.,.],.],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]],[]],[]],[]] => [[.,[[.,[[.,[.,.]],.]],.]],.] => [.,[.,[[.,[[.,[.,.]],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[],[]]],[]],[]] => [[.,[[.,[.,[[.,.],.]]],.]],.] => [.,[.,[[.,[.,[[.,.],.]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[]]]],[]],[]] => [[.,[[.,[.,[.,[.,.]]]],.]],.] => [.,[.,[[.,[.,[.,[.,.]]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[],[],[]]],[]] => [[.,[.,[[[[.,.],.],.],.]]],.] => [.,[.,[.,[[[[.,.],.],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
>>> Load all 124 entries. <<<
[[[[[]],[],[]]],[]] => [[.,[.,[[[.,[.,.]],.],.]]],.] => [.,[.,[.,[[[.,[.,.]],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[],[]],[]]],[]] => [[.,[.,[[.,[[.,.],.]],.]]],.] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[]]],[]]],[]] => [[.,[.,[[.,[.,[.,.]]],.]]],.] => [.,[.,[.,[[.,[.,[.,.]]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[],[],[]]]],[]] => [[.,[.,[.,[[[.,.],.],.]]]],.] => [.,[.,[.,[.,[[[.,.],.],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[]],[]]]],[]] => [[.,[.,[.,[[.,[.,.]],.]]]],.] => [.,[.,[.,[.,[[.,[.,.]],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[],[]]]]],[]] => [[.,[.,[.,[.,[[.,.],.]]]]],.] => [.,[.,[.,[.,[.,[[.,.],.]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[[]]]]]],[]] => [[.,[.,[.,[.,[.,[.,.]]]]]],.] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[],[],[],[],[],[]]] => [.,[[[[[[.,.],.],.],.],.],.]] => [[.,[[[[[.,.],.],.],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[]],[],[],[],[]]] => [.,[[[[[.,[.,.]],.],.],.],.]] => [[.,[[[[.,[.,.]],.],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[]],[],[],[]]] => [.,[[[[.,[[.,.],.]],.],.],.]] => [[.,[[[.,[[.,.],.]],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]]],[],[],[]]] => [.,[[[[.,[.,[.,.]]],.],.],.]] => [[.,[[[.,[.,[.,.]]],.],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[],[]],[],[]]] => [.,[[[.,[[[.,.],.],.]],.],.]] => [[.,[[.,[[[.,.],.],.]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]],[]],[],[]]] => [.,[[[.,[[.,[.,.]],.]],.],.]] => [[.,[[.,[[.,[.,.]],.]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[],[]]],[],[]]] => [.,[[[.,[.,[[.,.],.]]],.],.]] => [[.,[[.,[.,[[.,.],.]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[]]]],[],[]]] => [.,[[[.,[.,[.,[.,.]]]],.],.]] => [[.,[[.,[.,[.,[.,.]]]],.]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[],[],[],[]],[]]] => [.,[[.,[[[[.,.],.],.],.]],.]] => [[.,[.,[[[[.,.],.],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[]],[],[]],[]]] => [.,[[.,[[[.,[.,.]],.],.]],.]] => [[.,[.,[[[.,[.,.]],.],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[],[]],[]],[]]] => [.,[[.,[[.,[[.,.],.]],.]],.]] => [[.,[.,[[.,[[.,.],.]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[]]],[]],[]]] => [.,[[.,[[.,[.,[.,.]]],.]],.]] => [[.,[.,[[.,[.,[.,.]]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[],[],[]]],[]]] => [.,[[.,[.,[[[.,.],.],.]]],.]] => [[.,[.,[.,[[[.,.],.],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[]],[]]],[]]] => [.,[[.,[.,[[.,[.,.]],.]]],.]] => [[.,[.,[.,[[.,[.,.]],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[],[]]]],[]]] => [.,[[.,[.,[.,[[.,.],.]]]],.]] => [[.,[.,[.,[.,[[.,.],.]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[[[[[[[]]]]],[]]] => [.,[[.,[.,[.,[.,[.,.]]]]],.]] => [[.,[.,[.,[.,[.,[.,.]]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Map
to binary tree: left brother = left child
Description
Return a binary tree of size $n-1$ (where $n$ is the size of $t$, and where $t$ is an ordered tree) by the following recursive rule:
- if $x$ is the left brother of $y$ in $t$, then $x$ becomes the left child of $y$;
- if $x$ is the last child of $y$ in $t$, then $x$ becomes the right child of $y$,
and removing the root of $t$.
Map
left rotate
Description
Return the result of left rotation applied to a binary tree.
Left rotation on binary trees is defined as follows: Let $T$ be a binary tree such that the right child of the root of $T$ is a node. Let $A$ be the left child of the root of $T$, and let $B$ and $C$ be the left and right children of the right child of the root of $T$. (Keep in mind that nodes of trees are identified with the subtrees consisting of their descendants.) Then, the left rotation of $T$ is the binary tree in which the right child of the root is $C$, whereas the left child of the root is a node whose left and right children are $A$ and $B$.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.