Identifier
Values
[1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => 2
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 3
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 4
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 6
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 5
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 7
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 7
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 7
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 12
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 6
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 8
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 8
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 8
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => 13
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => 8
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7) => 11
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 8
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7) => 13
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0,1,0] => ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7) => 13
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0,1,0] => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => 12
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => 14
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => 20
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
Hessenberg poset
Description
The Hessenberg poset of a Dyck path.
Let $D$ be a Dyck path of semilength $n$, regarded as a subdiagonal path from $(0,0)$ to $(n,n)$, and let $\boldsymbol{m}_i$ be the $x$-coordinate of the $i$-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to $D$ has elements $\{1,\dots,n\}$ with $i < j$ if $j < \boldsymbol{m}_i$.
Map
peaks-to-valleys
Description
Return the path that has a valley wherever the original path has a peak of height at least one.
More precisely, the height of a valley in the image is the height of the corresponding peak minus $2$.
This is also (the inverse of) rowmotion on Dyck paths regarded as order ideals in the triangular poset.