Identifier
-
Mp00121:
Dyck paths
—Cori-Le Borgne involution⟶
Dyck paths
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001878: Lattices ⟶ ℤ
Values
[1,0,1,0,1,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(1,2),(1,3)],4) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => ([(1,4),(2,3),(2,4)],5) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => ([(0,2),(2,1)],3) => 1
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => ([(2,5),(3,4),(3,5)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(1,2),(2,5),(5,3),(5,4)],6) => ([(0,2),(2,1)],3) => 1
[1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6) => ([(0,2),(2,1)],3) => 1
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => ([(0,2),(2,1)],3) => 1
[1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([(0,2),(2,1)],3) => 1
[1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => ([(0,2),(2,1)],3) => 1
[1,1,0,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,5),(1,5),(4,2),(5,3),(5,4)],6) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,1,0,1,0,0] => ([(0,2),(0,6),(1,5),(1,6),(2,5),(5,3),(5,4),(6,3),(6,4)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5),(4,6),(5,6)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => ([(0,5),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(2,6),(3,5),(3,6)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,1,0,1,0,0,0] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,1,0,0] => ([(0,6),(1,3),(1,6),(3,4),(3,5),(5,2),(6,4),(6,5)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,0,1,0,1,0,0,0] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,1,0,1,0,0] => ([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => ([(0,5),(0,6),(1,4),(1,5),(2,3),(2,4),(3,5),(3,6),(4,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,1),(4,5)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,1,0,1,0,0,0] => ([(0,6),(1,4),(1,6),(2,3),(2,4),(3,6),(4,5),(6,5)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,0,1,0,1,0,0,0,0] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => ([(0,2),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(6,3)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,1,0,0] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(5,3),(6,2),(6,3)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0,1,0] => ([(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,2),(4,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0,1,0] => ([(0,5),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,1,0,1,0,0,0] => ([(0,5),(0,6),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,6),(4,6),(5,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,1,0,0,0] => ([(0,6),(1,5),(2,3),(2,5),(3,6),(5,6),(6,4)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,0,1,0,1,0,0,1,0,0,0] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,0,1,0,0,0,1,0,0] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(4,5)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(0,5),(4,6),(5,1),(5,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,1,0,0,0,0] => ([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => ([(3,6),(4,5),(4,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,1,0,1,0,0] => ([(0,3),(1,5),(1,6),(3,5),(3,6),(5,4),(6,2),(6,4)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,1,0,0,1,0] => ([(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,2),(6,1)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,3),(1,4),(1,6),(2,5),(3,4),(3,6),(4,2),(6,5)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,0,1,1,0,1,0,0,0] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,2),(4,1),(4,3)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,1,0,1,0,0] => ([(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(4,6),(5,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,3),(1,5),(1,6),(3,5),(3,6),(4,2),(5,4),(6,4)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(6,4)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,1,0,0,1,0,0] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0,1,0] => ([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,1,1,0,1,0,0,0] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,1,0,1,0,0,0,0] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,1,0,0] => ([(0,6),(1,3),(3,6),(5,2),(6,4),(6,5)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0,1,0] => ([(0,4),(0,5),(1,6),(4,6),(5,1),(6,2),(6,3)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,6),(1,2),(2,6),(3,5),(4,5),(6,3),(6,4)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,1,1,0,1,0,0,0] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,1,0,0] => ([(0,6),(1,4),(4,6),(5,2),(5,3),(6,5)],7) => ([(0,2),(2,1)],3) => 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,1,0,1,0,0,0] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(3,4),(3,5),(3,6)],7) => ([(0,2),(2,1)],3) => 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,1,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(5,2),(5,3),(6,3),(6,4)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,0,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,1,1,0,0,0] => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(4,5)],7) => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,5),(2,6),(3,5),(3,6),(4,2),(4,3),(6,1)],7) => ([(0,2),(2,1)],3) => 1
>>> Load all 144 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Map
Hessenberg poset
Description
The Hessenberg poset of a Dyck path.
Let $D$ be a Dyck path of semilength $n$, regarded as a subdiagonal path from $(0,0)$ to $(n,n)$, and let $\boldsymbol{m}_i$ be the $x$-coordinate of the $i$-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to $D$ has elements $\{1,\dots,n\}$ with $i < j$ if $j < \boldsymbol{m}_i$.
Let $D$ be a Dyck path of semilength $n$, regarded as a subdiagonal path from $(0,0)$ to $(n,n)$, and let $\boldsymbol{m}_i$ be the $x$-coordinate of the $i$-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to $D$ has elements $\{1,\dots,n\}$ with $i < j$ if $j < \boldsymbol{m}_i$.
Map
antichains of maximal size
Description
The lattice of antichains of maximal size in a poset.
The set of antichains of maximal size can be ordered by setting $A \leq B \leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow} B$, where $\mathop{\downarrow} A$ is the order ideal generated by $A$.
This is a sublattice of the lattice of all antichains with respect to the same order relation. In particular, it is distributive.
The set of antichains of maximal size can be ordered by setting $A \leq B \leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow} B$, where $\mathop{\downarrow} A$ is the order ideal generated by $A$.
This is a sublattice of the lattice of all antichains with respect to the same order relation. In particular, it is distributive.
Map
Cori-Le Borgne involution
Description
The Cori-Le Borgne involution on Dyck paths.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!