Identifier
-
Mp00058:
Perfect matchings
—to permutation⟶
Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00206: Posets —antichains of maximal size⟶ Lattices
St001878: Lattices ⟶ ℤ
Values
[(1,3),(2,4)] => [3,4,1,2] => ([(0,3),(1,2)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => ([(0,2),(2,1)],3) => 1
[(1,3),(2,4),(5,6)] => [3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,6),(2,4),(3,5)] => [6,4,5,2,3,1] => ([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,3),(2,5),(4,6)] => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,2),(3,5),(4,6)] => [2,1,5,6,3,4] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[(1,5),(2,6),(3,4)] => [5,6,4,3,1,2] => ([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => ([(0,6),(0,7),(1,6),(1,7),(4,2),(4,3),(5,2),(5,3),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,3),(2,1),(3,2)],4) => 1
[(1,3),(2,4),(5,6),(7,8)] => [3,4,1,2,6,5,8,7] => ([(0,3),(1,2),(2,6),(2,7),(3,6),(3,7),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 2
[(1,8),(2,3),(4,5),(6,7)] => [8,3,2,5,4,7,6,1] => ([(2,4),(2,5),(3,4),(3,5),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(2,1)],3) => 1
[(1,8),(2,4),(3,5),(6,7)] => [8,4,5,2,3,7,6,1] => ([(2,5),(3,4),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,7),(2,4),(3,5),(6,8)] => [7,4,5,2,3,8,1,6] => ([(0,7),(1,6),(2,5),(3,4),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,6),(2,4),(3,5),(7,8)] => [6,4,5,2,3,1,8,7] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(3,4),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,2),(3,5),(4,6),(7,8)] => [2,1,5,6,3,4,8,7] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(6,3),(7,2)],8) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[(1,5),(2,6),(3,4),(7,8)] => [5,6,4,3,1,2,8,7] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(3,4),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,6),(2,7),(3,4),(5,8)] => [6,7,4,3,8,1,2,5] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(3,4),(4,6),(5,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,5),(2,7),(3,4),(6,8)] => [5,7,4,3,1,8,2,6] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,4),(3,6),(4,7),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,5),(2,8),(3,4),(6,7)] => [5,8,4,3,1,7,6,2] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,6),(2,8),(3,4),(5,7)] => [6,8,4,3,7,1,5,2] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,4),(3,6)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,8),(2,7),(3,5),(4,6)] => [8,7,5,6,3,4,2,1] => ([(4,7),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,5),(2,8),(3,6),(4,7)] => [5,8,6,7,1,3,4,2] => ([(0,5),(0,7),(1,4),(1,6),(6,2),(7,3)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,4),(2,8),(3,6),(5,7)] => [4,8,6,1,7,3,5,2] => ([(0,3),(0,5),(0,7),(1,2),(1,4),(1,6),(4,7),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,3),(2,8),(4,6),(5,7)] => [3,8,1,6,7,4,5,2] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(6,3),(7,2)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,2),(3,8),(4,6),(5,7)] => [2,1,8,6,7,4,5,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(6,3),(7,2)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,6),(2,7),(3,5),(4,8)] => [6,7,5,8,3,1,2,4] => ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,7),(2,5),(3,6),(4,8)] => [7,5,6,8,2,3,1,4] => ([(0,7),(1,6),(2,4),(3,5),(4,6),(5,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,7),(2,4),(3,6),(5,8)] => [7,4,6,2,8,3,1,5] => ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,6),(5,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,8),(2,4),(3,6),(5,7)] => [8,4,6,2,7,3,5,1] => ([(2,5),(2,7),(3,4),(3,6),(4,7),(5,6)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,8),(2,3),(4,6),(5,7)] => [8,3,2,6,7,4,5,1] => ([(2,6),(2,7),(3,6),(3,7),(6,5),(7,4)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[(1,2),(3,4),(5,7),(6,8)] => [2,1,4,3,7,8,5,6] => ([(0,6),(0,7),(1,6),(1,7),(4,3),(5,2),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[(1,7),(2,3),(4,8),(5,6)] => [7,3,2,8,6,5,1,4] => ([(0,7),(1,6),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[(1,7),(2,4),(3,8),(5,6)] => [7,4,8,2,6,5,1,3] => ([(0,5),(1,4),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[(1,6),(2,5),(3,8),(4,7)] => [6,5,8,7,2,1,4,3] => ([(0,6),(0,7),(1,4),(1,5),(2,4),(2,5),(3,6),(3,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,8),(2,6),(3,7),(4,5)] => [8,6,7,5,4,2,3,1] => ([(4,7),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,5),(2,7),(3,8),(4,6)] => [5,7,8,6,1,4,2,3] => ([(0,5),(0,7),(1,4),(1,6),(6,2),(7,3)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,4),(2,7),(3,8),(5,6)] => [4,7,8,1,6,5,2,3] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(4,2),(5,3)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,3),(2,7),(4,8),(5,6)] => [3,7,1,8,6,5,2,4] => ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,5),(3,4)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,2),(3,7),(4,8),(5,6)] => [2,1,7,8,6,5,3,4] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(6,3),(7,2)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,7),(2,8),(3,6),(4,5)] => [7,8,6,5,4,3,1,2] => ([(4,7),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
search for individual values
searching the database for the individual values of this statistic
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Map
antichains of maximal size
Description
The lattice of antichains of maximal size in a poset.
The set of antichains of maximal size can be ordered by setting $A \leq B \leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow} B$, where $\mathop{\downarrow} A$ is the order ideal generated by $A$.
This is a sublattice of the lattice of all antichains with respect to the same order relation. In particular, it is distributive.
The set of antichains of maximal size can be ordered by setting $A \leq B \leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow} B$, where $\mathop{\downarrow} A$ is the order ideal generated by $A$.
This is a sublattice of the lattice of all antichains with respect to the same order relation. In particular, it is distributive.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!