Identifier
Values
([(0,1)],2) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(0,2),(1,2)],3) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(1,3),(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(0,3),(1,3),(2,3)],4) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,2),(0,3),(1,2),(1,3)],4) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(1,4),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(0,4),(1,4),(2,4),(3,4)],5) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([],2) => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
search for individual values
searching the database for the individual values of this statistic
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Map
weak duplicate order
Description
The weak duplicate order of the de-duplicate of a graph.
Let G=(V,E) be a graph and let N={Nv|v∈V} be the set of (distinct) neighbourhoods of G.
This map yields the poset obtained by ordering N by reverse inclusion.
Let G=(V,E) be a graph and let N={Nv|v∈V} be the set of (distinct) neighbourhoods of G.
This map yields the poset obtained by ordering N by reverse inclusion.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal I in a poset P is a downward closed set, i.e., a∈I and b≤a implies b∈I. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
An order ideal I in a poset P is a downward closed set, i.e., a∈I and b≤a implies b∈I. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
dual poset
Description
The dual of a poset.
The dual (or opposite) of a poset (P,≤) is the poset (Pd,≤d) with x≤dy if y≤x.
The dual (or opposite) of a poset (P,≤) is the poset (Pd,≤d) with x≤dy if y≤x.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!