Processing math: 100%

Identifier
Values
[1,2] => [1,2] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 0
[2,1] => [2,1] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,3] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 0
[1,3,2] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[2,1,3] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[2,3,1] => [2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,1,2] => [1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,3,2,4] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[1,4,2,3] => [1,4,2,3] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 2
[2,1,3,4] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[2,3,1,4] => [2,3,1,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[2,4,1,3] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[3,4,1,2] => [1,3,4,2] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 2
[4,1,2,3] => [1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[2,1,3,4,5] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 1
[3,1,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 1
[4,1,2,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[5,1,2,3,4] => [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
Number of indecomposable injective modules with projective dimension 2.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal I in a poset P is a downward closed set, i.e., aI and ba implies bI. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
Foata bijection
Description
Sends a permutation to its image under the Foata bijection.
The Foata bijection ϕ is a bijection on the set of words with no two equal letters. It can be defined by induction on the size of the word:
Given a word w1w2...wn, compute the image inductively by starting with ϕ(w1)=w1.
At the i-th step, if ϕ(w1w2...wi)=v1v2...vi, define ϕ(w1w2...wiwi+1) by placing wi+1 on the end of the word v1v2...vi and breaking the word up into blocks as follows.
  • If wi+1vi, place a vertical line to the right of each vk for which wi+1vk.
  • If wi+1<vi, place a vertical line to the right of each vk for which wi+1<vk.
In either case, place a vertical line at the start of the word as well. Now, within each block between vertical lines, cyclically shift the entries one place to the right.
To compute ϕ([1,4,2,5,3]), the sequence of words is
  • 1
  • |1|414
  • |14|2412
  • |4|1|2|54125
  • |4|125|345123.
In total, this gives ϕ([1,4,2,5,3])=[4,5,1,2,3].
This bijection sends the major index (St000004The major index of a permutation.) to the number of inversions (St000018The number of inversions of a permutation.).
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation π of length n, this poset has vertices
{(i,π(i)) : 1in}
and the cover relation is given by (w,x)(y,z) if wy and xz.
For example, the permutation [3,1,5,4,2] is mapped to the poset with cover relations
{(2,1)(5,2), (2,1)(4,4), (2,1)(3,5), (1,3)(4,4), (1,3)(3,5)}.