Identifier
            
            - 
Mp00132:
    Dyck paths
    
—switch returns and last double rise⟶
Dyck paths
		
Mp00242: Dyck paths —Hessenberg poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001845: Lattices ⟶ ℤ 
                Values
            
            [1,0] => [1,0] => ([],1) => ([(0,1)],2) => 0
[1,0,1,0] => [1,0,1,0] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 0
[1,1,0,0] => [1,1,0,0] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 0
[1,0,1,0,1,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 0
[1,0,1,1,0,0] => [1,1,0,1,0,0] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,1,0,0,1,0] => [1,1,0,0,1,0] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 0
[1,1,0,1,0,0] => [1,0,1,1,0,0] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 0
[1,1,1,0,0,0] => [1,1,1,0,0,0] => ([],3) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 0
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 0
[1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 0
[1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 0
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 0
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 0
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 0
[1,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,0] => ([(0,1),(0,2),(0,3)],4) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => 0
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,0] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 0
[1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => 0
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => 0
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => 0
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => 0
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => 0
[1,0,1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 0
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 0
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => 0
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 0
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 0
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 0
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => 0
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => 0
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(1,4),(4,2),(4,3)],5) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => 0
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 0
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9) => 0
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9) => 0
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 0
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8) => 0
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8) => 0
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8) => 0
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8) => 0
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 0
[1,1,1,0,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9) => 0
[1,1,1,0,0,1,0,1,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9) => 0
[1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9) => 0
[1,1,1,0,1,0,0,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9) => 0
[1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9) => 0
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9) => 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 0
[1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,6),(2,8),(3,8),(4,7),(5,1),(6,4),(7,2),(7,3),(8,5)],9) => 0
[1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,7),(2,8),(3,8),(4,5),(5,1),(6,4),(7,2),(7,3),(8,6)],9) => 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9) => 0
                    
                        
                search for individual values
                        
            
                            searching the database for the individual values of this statistic
                        
                    
                    
                    /
                    
                        
			search for generating function
                        
                            searching the database for statistics with the same generating function
                        
                    
                    
                Description
            The number of join irreducibles minus the rank of a lattice.
A lattice is join-extremal, if this statistic is $0$.
	A lattice is join-extremal, if this statistic is $0$.
Map
            Hessenberg poset
	    
	Description
            The Hessenberg poset of a Dyck path.
Let $D$ be a Dyck path of semilength $n$, regarded as a subdiagonal path from $(0,0)$ to $(n,n)$, and let $\boldsymbol{m}_i$ be the $x$-coordinate of the $i$-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to $D$ has elements $\{1,\dots,n\}$ with $i < j$ if $j < \boldsymbol{m}_i$.
	Let $D$ be a Dyck path of semilength $n$, regarded as a subdiagonal path from $(0,0)$ to $(n,n)$, and let $\boldsymbol{m}_i$ be the $x$-coordinate of the $i$-th up step.
Then the Hessenberg poset (or natural unit interval order) corresponding to $D$ has elements $\{1,\dots,n\}$ with $i < j$ if $j < \boldsymbol{m}_i$.
Map
            order ideals
	    
	Description
            The lattice of order ideals of a poset.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
	An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
            switch returns and last double rise
	    
	Description
            An alternative to the Adin-Bagno-Roichman transformation of a Dyck path.
This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
	This is a bijection preserving the number of up steps before each peak and exchanging the number of components with the position of the last double rise.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!