Processing math: 36%

Identifier
Values
['A',1] => ([],1) => ([],1) => ([],1) => 1
['A',2] => ([(0,2),(1,2)],3) => ([(0,1)],2) => ([(0,1)],2) => 2
['B',2] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(2,1)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of tolerances of a finite lattice.
Let L be a lattice. A tolerance τ is a reflexive and symmetric relation on L which is compatible with meet and join. Equivalently, a tolerance of L is the image of a congruence by a surjective lattice homomorphism onto L.
The number of tolerances of a chain of n elements is the Catalan number \frac{1}{n+1}\binom{2n}{n}, see [2].
Map
maximal antichains
Description
The lattice of maximal antichains in a poset.
An antichain A in a poset is maximal if there is no antichain of larger cardinality which contains all elements of A.
The set of maximal antichains can be ordered by setting A \leq B \Leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow}B, where \mathop{\downarrow}A is the order ideal generated by A.
Map
lattice of congruences
Description
The lattice of congruences of a lattice.
A congruence of a lattice is an equivalence relation such that a_1 \cong a_2 and b_1 \cong b_2 implies a_1 \vee b_1 \cong a_2 \vee b_2 and a_1 \wedge b_1 \cong a_2 \wedge b_2.
The set of congruences ordered by refinement forms a lattice.
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where \alpha \prec \beta if \beta - \alpha is a simple root.