Identifier
Values
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
search for individual values
searching the database for the individual values of this statistic
Description
The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
core
Description
The core of a graph.
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph G is the smallest graph C such that there is a homomorphism from G to C and a homomorphism from C to G.
Note that the core of a graph is not necessarily connected, see [2].
Map
Laplacian multiplicities
Description
The composition of multiplicities of the Laplacian eigenvalues.
Let λ1>λ2>… be the eigenvalues of the Laplacian matrix of a graph on n vertices. Then this map returns the composition a1,…,ak of n where ai is the multiplicity of λi.
Let λ1>λ2>… be the eigenvalues of the Laplacian matrix of a graph on n vertices. Then this map returns the composition a1,…,ak of n where ai is the multiplicity of λi.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!