Identifier
-
Mp00058:
Perfect matchings
—to permutation⟶
Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00205: Posets —maximal antichains⟶ Lattices
St001624: Lattices ⟶ ℤ
Values
[(1,2)] => [2,1] => ([],2) => ([],1) => 1
[(1,2),(3,4)] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => 1
[(1,3),(2,4)] => [3,4,1,2] => ([(0,3),(1,2)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,4),(2,3)] => [4,3,2,1] => ([],4) => ([],1) => 1
[(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => ([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => ([(0,2),(2,1)],3) => 1
[(1,3),(2,4),(5,6)] => [3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,4),(2,3),(5,6)] => [4,3,2,1,6,5] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => 1
[(1,5),(2,3),(4,6)] => [5,3,2,6,1,4] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,6),(2,3),(4,5)] => [6,3,2,5,4,1] => ([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => 1
[(1,6),(2,4),(3,5)] => [6,4,5,2,3,1] => ([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,5),(2,4),(3,6)] => [5,4,6,2,1,3] => ([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,3),(2,5),(4,6)] => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,2),(3,5),(4,6)] => [2,1,5,6,3,4] => ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,2),(3,6),(4,5)] => [2,1,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => ([(0,1)],2) => 1
[(1,3),(2,6),(4,5)] => [3,6,1,5,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,4),(2,6),(3,5)] => [4,6,5,1,3,2] => ([(0,4),(0,5),(1,2),(1,3)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,5),(2,6),(3,4)] => [5,6,4,3,1,2] => ([(2,5),(3,4)],6) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,6),(2,5),(3,4)] => [6,5,4,3,2,1] => ([],6) => ([],1) => 1
[(1,2),(3,4),(5,6),(7,8)] => [2,1,4,3,6,5,8,7] => ([(0,6),(0,7),(1,6),(1,7),(4,2),(4,3),(5,2),(5,3),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,3),(2,1),(3,2)],4) => 1
[(1,3),(2,4),(5,6),(7,8)] => [3,4,1,2,6,5,8,7] => ([(0,3),(1,2),(2,6),(2,7),(3,6),(3,7),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 2
[(1,4),(2,3),(5,6),(7,8)] => [4,3,2,1,6,5,8,7] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,2),(2,1)],3) => 1
[(1,5),(2,3),(4,6),(7,8)] => [5,3,2,6,1,4,8,7] => ([(0,7),(1,6),(2,6),(2,7),(3,6),(3,7),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,6),(2,3),(4,5),(7,8)] => [6,3,2,5,4,1,8,7] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(2,1)],3) => 1
[(1,7),(2,3),(4,5),(6,8)] => [7,3,2,5,4,8,1,6] => ([(0,7),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,8),(2,3),(4,5),(6,7)] => [8,3,2,5,4,7,6,1] => ([(2,4),(2,5),(3,4),(3,5),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(2,1)],3) => 1
[(1,8),(2,4),(3,5),(6,7)] => [8,4,5,2,3,7,6,1] => ([(2,5),(3,4),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,7),(2,4),(3,5),(6,8)] => [7,4,5,2,3,8,1,6] => ([(0,7),(1,6),(2,5),(3,4),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,6),(2,4),(3,5),(7,8)] => [6,4,5,2,3,1,8,7] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(3,4),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,5),(2,4),(3,6),(7,8)] => [5,4,6,2,1,3,8,7] => ([(0,5),(1,5),(2,4),(3,4),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,2),(3,5),(4,6),(7,8)] => [2,1,5,6,3,4,8,7] => ([(0,6),(0,7),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(6,3),(7,2)],8) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 2
[(1,2),(3,6),(4,5),(7,8)] => [2,1,6,5,4,3,8,7] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(2,1)],3) => 1
[(1,3),(2,6),(4,5),(7,8)] => [3,6,1,5,4,2,8,7] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,4),(2,6),(3,5),(7,8)] => [4,6,5,1,3,2,8,7] => ([(0,4),(0,5),(1,2),(1,3),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,5),(2,6),(3,4),(7,8)] => [5,6,4,3,1,2,8,7] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(3,4),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,6),(2,5),(3,4),(7,8)] => [6,5,4,3,2,1,8,7] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1)],2) => 1
[(1,7),(2,5),(3,4),(6,8)] => [7,5,4,3,2,8,1,6] => ([(0,7),(1,6),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,8),(2,5),(3,4),(6,7)] => [8,5,4,3,2,7,6,1] => ([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1)],2) => 1
[(1,8),(2,6),(3,4),(5,7)] => [8,6,4,3,7,2,5,1] => ([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,7),(2,6),(3,4),(5,8)] => [7,6,4,3,8,2,1,5] => ([(0,7),(1,7),(2,6),(3,6),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,5),(2,7),(3,4),(6,8)] => [5,7,4,3,1,8,2,6] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,4),(3,6),(4,7),(5,6)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,4),(2,7),(3,5),(6,8)] => [4,7,5,1,3,8,2,6] => ([(0,3),(0,5),(1,2),(1,4),(2,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,3),(2,7),(4,5),(6,8)] => [3,7,1,5,4,8,2,6] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,2),(3,7),(4,5),(6,8)] => [2,1,7,5,4,8,3,6] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,2),(3,8),(4,5),(6,7)] => [2,1,8,5,4,7,6,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(6,2),(6,3),(7,2),(7,3)],8) => ([(0,2),(2,1)],3) => 1
[(1,3),(2,8),(4,5),(6,7)] => [3,8,1,5,4,7,6,2] => ([(0,3),(0,6),(0,7),(1,2),(1,6),(1,7),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,4),(2,8),(3,5),(6,7)] => [4,8,5,1,3,7,6,2] => ([(0,3),(0,5),(1,2),(1,4),(4,6),(4,7),(5,6),(5,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,5),(2,8),(3,4),(6,7)] => [5,8,4,3,1,7,6,2] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,6),(2,8),(3,4),(5,7)] => [6,8,4,3,7,1,5,2] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,4),(3,6)],8) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => 2
[(1,8),(2,7),(3,4),(5,6)] => [8,7,4,3,6,5,2,1] => ([(4,6),(4,7),(5,6),(5,7)],8) => ([(0,1)],2) => 1
[(1,8),(2,7),(3,5),(4,6)] => [8,7,5,6,3,4,2,1] => ([(4,7),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,4),(2,8),(3,6),(5,7)] => [4,8,6,1,7,3,5,2] => ([(0,3),(0,5),(0,7),(1,2),(1,4),(1,6),(4,7),(5,6)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,3),(2,8),(4,6),(5,7)] => [3,8,1,6,7,4,5,2] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(6,3),(7,2)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,2),(3,8),(4,6),(5,7)] => [2,1,8,6,7,4,5,3] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(6,3),(7,2)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,2),(3,7),(4,6),(5,8)] => [2,1,7,6,8,4,3,5] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(4,3),(5,3),(6,2),(7,2)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,3),(2,7),(4,6),(5,8)] => [3,7,1,6,8,4,2,5] => ([(0,3),(0,6),(0,7),(1,2),(1,6),(1,7),(2,4),(3,5),(6,4),(7,5)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,4),(2,7),(3,6),(5,8)] => [4,7,6,1,8,3,2,5] => ([(0,4),(0,5),(0,7),(1,2),(1,3),(1,6),(2,7),(3,7),(4,6),(5,6)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,7),(2,6),(3,5),(4,8)] => [7,6,5,8,3,2,1,4] => ([(0,7),(1,7),(2,7),(3,6),(4,6),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,8),(2,6),(3,5),(4,7)] => [8,6,5,7,3,2,4,1] => ([(2,7),(3,7),(4,6),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,5),(2,4),(3,7),(6,8)] => [5,4,7,2,1,8,3,6] => ([(0,5),(0,7),(1,5),(1,7),(2,4),(2,6),(3,4),(3,6),(4,7),(5,6)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,7),(2,4),(3,6),(5,8)] => [7,4,6,2,8,3,1,5] => ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,6),(5,7)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,8),(2,4),(3,6),(5,7)] => [8,4,6,2,7,3,5,1] => ([(2,5),(2,7),(3,4),(3,6),(4,7),(5,6)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,8),(2,3),(4,6),(5,7)] => [8,3,2,6,7,4,5,1] => ([(2,6),(2,7),(3,6),(3,7),(6,5),(7,4)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,7),(2,3),(4,6),(5,8)] => [7,3,2,6,8,4,1,5] => ([(0,7),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,7)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,5),(2,3),(4,7),(6,8)] => [5,3,2,7,1,8,4,6] => ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,4),(3,6),(6,5),(7,4)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,4),(2,3),(5,7),(6,8)] => [4,3,2,1,7,8,5,6] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(6,5),(7,4)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,2),(3,4),(5,7),(6,8)] => [2,1,4,3,7,8,5,6] => ([(0,6),(0,7),(1,6),(1,7),(4,3),(5,2),(6,4),(6,5),(7,4),(7,5)],8) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 2
[(1,2),(3,4),(5,8),(6,7)] => [2,1,4,3,8,7,6,5] => ([(0,6),(0,7),(1,6),(1,7),(6,2),(6,3),(6,4),(6,5),(7,2),(7,3),(7,4),(7,5)],8) => ([(0,2),(2,1)],3) => 1
[(1,3),(2,4),(5,8),(6,7)] => [3,4,1,2,8,7,6,5] => ([(0,3),(1,2),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[(1,4),(2,3),(5,8),(6,7)] => [4,3,2,1,8,7,6,5] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => ([(0,1)],2) => 1
[(1,5),(2,3),(4,8),(6,7)] => [5,3,2,8,1,7,6,4] => ([(0,5),(0,6),(0,7),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,6),(2,3),(4,8),(5,7)] => [6,3,2,8,7,1,5,4] => ([(0,6),(0,7),(1,4),(1,5),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,7),(2,3),(4,8),(5,6)] => [7,3,2,8,6,5,1,4] => ([(0,7),(1,6),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,8),(2,3),(4,7),(5,6)] => [8,3,2,7,6,5,4,1] => ([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7)],8) => ([(0,1)],2) => 1
[(1,8),(2,4),(3,7),(5,6)] => [8,4,7,2,6,5,3,1] => ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,7),(2,4),(3,8),(5,6)] => [7,4,8,2,6,5,1,3] => ([(0,5),(1,4),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7)],8) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 2
[(1,6),(2,4),(3,8),(5,7)] => [6,4,8,2,7,1,5,3] => ([(0,5),(0,7),(1,4),(1,6),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 2
[(1,5),(2,4),(3,8),(6,7)] => [5,4,8,2,1,7,6,3] => ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,6),(2,7),(3,4),(3,6),(3,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,3),(2,5),(4,8),(6,7)] => [3,5,1,8,2,7,6,4] => ([(0,3),(0,7),(1,2),(1,6),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,2),(3,5),(4,8),(6,7)] => [2,1,5,8,3,7,6,4] => ([(0,6),(0,7),(1,6),(1,7),(6,3),(6,4),(6,5),(7,2),(7,4),(7,5)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,2),(3,6),(4,8),(5,7)] => [2,1,6,8,7,3,5,4] => ([(0,6),(0,7),(1,6),(1,7),(6,4),(6,5),(7,2),(7,3)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,3),(2,6),(4,8),(5,7)] => [3,6,1,8,7,2,5,4] => ([(0,3),(0,6),(0,7),(1,2),(1,4),(1,5),(2,6),(2,7),(3,4),(3,5)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,6),(2,5),(3,8),(4,7)] => [6,5,8,7,2,1,4,3] => ([(0,6),(0,7),(1,4),(1,5),(2,4),(2,5),(3,6),(3,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,8),(2,5),(3,7),(4,6)] => [8,5,7,6,2,4,3,1] => ([(2,6),(2,7),(3,4),(3,5)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,8),(2,6),(3,7),(4,5)] => [8,6,7,5,4,2,3,1] => ([(4,7),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,7),(2,6),(3,8),(4,5)] => [7,6,8,5,4,2,1,3] => ([(2,7),(3,7),(4,6),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,3),(2,7),(4,8),(5,6)] => [3,7,1,8,6,5,2,4] => ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,5),(3,4)],8) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[(1,2),(3,7),(4,8),(5,6)] => [2,1,7,8,6,5,3,4] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(6,3),(7,2)],8) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 2
[(1,2),(3,8),(4,7),(5,6)] => [2,1,8,7,6,5,4,3] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8) => ([(0,1)],2) => 1
[(1,3),(2,8),(4,7),(5,6)] => [3,8,1,7,6,5,4,2] => ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,4),(2,8),(3,7),(5,6)] => [4,8,7,1,6,5,3,2] => ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,5),(2,8),(3,7),(4,6)] => [5,8,7,6,1,4,3,2] => ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,6),(2,8),(3,7),(4,5)] => [6,8,7,5,4,1,3,2] => ([(2,6),(2,7),(3,4),(3,5)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,7),(2,8),(3,6),(4,5)] => [7,8,6,5,4,3,1,2] => ([(4,7),(5,6)],8) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[(1,8),(2,7),(3,6),(4,5)] => [8,7,6,5,4,3,2,1] => ([],8) => ([],1) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The breadth of a lattice.
The breadth of a lattice is the least integer b such that any join x1∨x2∨⋯∨xn, with n>b, can be expressed as a join over a proper subset of {x1,x2,…,xn}.
The breadth of a lattice is the least integer b such that any join x1∨x2∨⋯∨xn, with n>b, can be expressed as a join over a proper subset of {x1,x2,…,xn}.
Map
maximal antichains
Description
The lattice of maximal antichains in a poset.
An antichain A in a poset is maximal if there is no antichain of larger cardinality which contains all elements of A.
The set of maximal antichains can be ordered by setting A≤B⇔↓A⊆↓B, where ↓A is the order ideal generated by A.
An antichain A in a poset is maximal if there is no antichain of larger cardinality which contains all elements of A.
The set of maximal antichains can be ordered by setting A≤B⇔↓A⊆↓B, where ↓A is the order ideal generated by A.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation π of length n, this poset has vertices
{(i,π(i)) : 1≤i≤n}
and the cover relation is given by (w,x)≤(y,z) if w≤y and x≤z.
For example, the permutation [3,1,5,4,2] is mapped to the poset with cover relations
{(2,1)≺(5,2), (2,1)≺(4,4), (2,1)≺(3,5), (1,3)≺(4,4), (1,3)≺(3,5)}.
For a permutation π of length n, this poset has vertices
{(i,π(i)) : 1≤i≤n}
and the cover relation is given by (w,x)≤(y,z) if w≤y and x≤z.
For example, the permutation [3,1,5,4,2] is mapped to the poset with cover relations
{(2,1)≺(5,2), (2,1)≺(4,4), (2,1)≺(3,5), (1,3)≺(4,4), (1,3)≺(3,5)}.
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!