Identifier
-
Mp00081:
Standard tableaux
—reading word permutation⟶
Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00195: Posets —order ideals⟶ Lattices
St001613: Lattices ⟶ ℤ
Values
[[1]] => [1] => ([],1) => ([(0,1)],2) => 1
[[1,2]] => [1,2] => ([(0,1)],2) => ([(0,2),(2,1)],3) => 1
[[1],[2]] => [2,1] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[[1,2,3]] => [1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => 1
[[1,3],[2]] => [2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[[1,2],[3]] => [3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[[1],[2],[3]] => [3,2,1] => ([],3) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => 3
[[1,2,3,4]] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[[1,3,4],[2]] => [2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[[1,2,4],[3]] => [3,1,2,4] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 1
[[1,2,3],[4]] => [4,1,2,3] => ([(1,2),(2,3)],4) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => 2
[[1,3],[2,4]] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => 1
[[1,2],[3,4]] => [3,4,1,2] => ([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => 2
[[1,4],[2],[3]] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => 1
[[1,2,3,4,5]] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[[1,3,4,5],[2]] => [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 1
[[1,2,4,5],[3]] => [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => 1
[[1,2,3,5],[4]] => [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => 1
[[1,3,5],[2,4]] => [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => 1
[[1,2,3,4,5,6]] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8) => 1
[[1,2,4,5,6],[3]] => [3,1,2,4,5,6] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9) => 1
[[1,2,3,4,5,6,7]] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => 1
[[1,3,4,5,6,7],[2]] => [2,1,3,4,5,6,7] => ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The binary logarithm of the size of the center of a lattice.
An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a Boolean lattice.
An element of a lattice is central if it is neutral and has a complement. The subposet induced by central elements is a Boolean lattice.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal I in a poset P is a downward closed set, i.e., a∈I and b≤a implies b∈I. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
An order ideal I in a poset P is a downward closed set, i.e., a∈I and b≤a implies b∈I. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation π of length n, this poset has vertices
{(i,π(i)) : 1≤i≤n}
and the cover relation is given by (w,x)≤(y,z) if w≤y and x≤z.
For example, the permutation [3,1,5,4,2] is mapped to the poset with cover relations
{(2,1)≺(5,2), (2,1)≺(4,4), (2,1)≺(3,5), (1,3)≺(4,4), (1,3)≺(3,5)}.
For a permutation π of length n, this poset has vertices
{(i,π(i)) : 1≤i≤n}
and the cover relation is given by (w,x)≤(y,z) if w≤y and x≤z.
For example, the permutation [3,1,5,4,2] is mapped to the poset with cover relations
{(2,1)≺(5,2), (2,1)≺(4,4), (2,1)≺(3,5), (1,3)≺(4,4), (1,3)≺(3,5)}.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!