Identifier
Values
[1] => [[1],[]] => ([],1) => ([],1) => 0
[2] => [[2],[]] => ([(0,1)],2) => ([(0,1)],2) => 0
[1,1] => [[1,1],[]] => ([(0,1)],2) => ([(0,1)],2) => 0
[3] => [[3],[]] => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 0
[2,1] => [[2,1],[]] => ([(0,1),(0,2)],3) => ([(0,2),(1,2)],3) => 0
[1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 0
[4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 0
[3,1] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => ([(0,3),(1,2),(2,3)],4) => 0
[2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 0
[2,1,1] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => ([(0,3),(1,2),(2,3)],4) => 0
[1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 0
[5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
[4,1] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
[3,2] => [[3,2],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
[3,1,1] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
[2,2,1] => [[2,2,1],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
[2,1,1,1] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
[1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
[6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 0
[5,1] => [[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 0
[4,2] => [[4,2],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 1
[4,1,1] => [[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 0
[3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 1
[3,2,1] => [[3,2,1],[]] => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
[3,1,1,1] => [[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 0
[2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 1
[2,2,1,1] => [[2,2,1,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 1
[2,1,1,1,1] => [[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 0
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The minimal number of edges to add or remove to make a graph a line graph.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.