edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>1 [2]=>0 [1,1]=>4 [3]=>0 [2,1]=>2 [1,1,1]=>27 [4]=>0 [3,1]=>0 [2,2]=>1 [2,1,1]=>27 [1,1,1,1]=>256 [5]=>0 [4,1]=>0 [3,2]=>0 [3,1,1]=>9 [2,2,1]=>27 [2,1,1,1]=>384 [1,1,1,1,1]=>3125 [6]=>0 [5,1]=>0 [4,2]=>0 [4,1,1]=>0 [3,3]=>0 [3,2,1]=>9 [3,1,1,1]=>256 [2,2,2]=>27 [2,2,1,1]=>576 [2,1,1,1,1]=>6250 [1,1,1,1,1,1]=>46656 [7]=>0 [6,1]=>0 [5,2]=>0 [5,1,1]=>0 [4,3]=>0 [4,2,1]=>0 [4,1,1,1]=>64 [3,3,1]=>3 [3,2,2]=>9 [3,2,1,1]=>384 [3,1,1,1,1]=>6250 [2,2,2,1]=>864 [2,2,1,1,1]=>12500 [2,1,1,1,1,1]=>116640 [1,1,1,1,1,1,1]=>823543
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The value of the elementary symmetric function evaluated at 1.
The statistic is $e_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=x_2=\dotsb=x_k=1$,
where $\lambda$ has $k$ parts.
Thus, the statistic is equal to $\prod_{j=1}^k \frac{(k)_{\lambda_j}}{\lambda_j!}$
where $\lambda$ has $k$ parts.
References
[1] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
[2] Rosas, M. H. Specializations of MacMahon symmetric functions and the polynomial algebra DOI:10.1016/s0012-365x(01)00263-1
Created
Jul 11, 2020 at 10:12 by Per Alexandersson
Updated
Jul 11, 2020 at 10:49 by Per Alexandersson