Processing math: 100%

Identifier
Values
([(1,2)],3) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(2,3)],4) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,3),(2,3)],4) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(3,4)],5) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,4),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,4),(2,3)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(1,4),(2,3),(3,4)],5) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(2,3),(2,4),(3,4)],5) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(4,5)],6) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(2,5),(3,4)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(1,2),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(1,5),(2,5),(3,4),(4,5)],6) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(5,6)],7) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(3,6),(4,5)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(2,3),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(1,2),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,6),(2,6),(3,5),(4,5)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 8
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => ([(0,2),(1,2)],3) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 2
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 0
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 0
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 2
search for individual values
searching the database for the individual values of this statistic
Description
The second Elser number of a connected graph.
For a connected graph G the k-th Elser number is
elsk(G)=(1)|V(G)|+1N(1)|E(N)||V(N)|k
where the sum is over all nuclei of G, that is, the connected subgraphs of G whose vertex set is a vertex cover of G.
It is clear that this number is even. It was shown in [1] that it is non-negative.
Map
weak duplicate order
Description
The weak duplicate order of the de-duplicate of a graph.
Let G=(V,E) be a graph and let N={Nv|vV} be the set of (distinct) neighbourhoods of G.
This map yields the poset obtained by ordering N by reverse inclusion.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.