Identifier
-
Mp00327:
Dyck paths
—inverse Kreweras complement⟶
Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St001532: Posets ⟶ ℤ
Values
[1,0] => [1,0] => ([],1) => 1
[1,0,1,0] => [1,1,0,0] => ([(0,1)],2) => 1
[1,1,0,0] => [1,0,1,0] => ([(0,1)],2) => 1
[1,0,1,0,1,0] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,0,1,1,0,0] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => 1
[1,1,0,0,1,0] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => 1
[1,1,0,1,0,0] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => 1
[1,1,1,0,0,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => 1
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[1,1,0,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 1
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,0,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,0,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,0,0,1,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,0,0,0,1,1,0,1,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,0,1,0,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The leading coefficient of the Poincare polynomial of the poset cone.
For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$.
Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$.
This statistic records its leading coefficient.
For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$.
Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$.
This statistic records its leading coefficient.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Map
inverse Kreweras complement
Description
Return the inverse of the Kreweras complement of a Dyck path, regarded as a noncrossing set partition.
To identify Dyck paths and noncrossing set partitions, this maps uses the following classical bijection. The number of down steps after the $i$-th up step of the Dyck path is the size of the block of the set partition whose maximal element is $i$. If $i$ is not a maximal element of a block, the $(i+1)$-st step is also an up step.
To identify Dyck paths and noncrossing set partitions, this maps uses the following classical bijection. The number of down steps after the $i$-th up step of the Dyck path is the size of the block of the set partition whose maximal element is $i$. If $i$ is not a maximal element of a block, the $(i+1)$-st step is also an up step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!