Identifier
            
            - 
Mp00175:
Permutations
—inverse Foata bijection⟶
Permutations
		
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001532: Posets ⟶ ℤ 
                Values
            
            [1] => [1] => [1] => ([],1) => 1
[1,2] => [1,2] => [1,2] => ([(0,1)],2) => 1
[2,1] => [2,1] => [1,2] => ([(0,1)],2) => 1
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3) => 1
[1,3,2] => [3,1,2] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[2,1,3] => [2,1,3] => [1,2,3] => ([(0,2),(2,1)],3) => 1
[2,3,1] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3) => 1
[3,1,2] => [1,3,2] => [1,2,3] => ([(0,2),(2,1)],3) => 1
[3,2,1] => [3,2,1] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 1
[1,2,4,3] => [4,1,2,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,3,2,4] => [3,1,2,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 2
[1,3,4,2] => [3,4,1,2] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 2
[1,4,2,3] => [1,4,2,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[1,4,3,2] => [4,3,1,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 2
[2,1,3,4] => [2,1,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 1
[2,1,4,3] => [2,4,1,3] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[2,3,1,4] => [2,3,1,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 1
[2,3,4,1] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 1
[2,4,1,3] => [4,2,1,3] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[2,4,3,1] => [4,2,3,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 2
[3,1,2,4] => [1,3,2,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 1
[3,1,4,2] => [1,3,4,2] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 1
[3,2,1,4] => [3,2,1,4] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 2
[3,2,4,1] => [3,2,4,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 2
[3,4,1,2] => [3,1,4,2] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 2
[3,4,2,1] => [3,4,2,1] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 2
[4,1,2,3] => [1,2,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 1
[4,1,3,2] => [4,1,3,2] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 2
[4,2,1,3] => [2,1,4,3] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 1
[4,2,3,1] => [2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[4,3,1,2] => [1,4,3,2] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 1
[4,3,2,1] => [4,3,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 2
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,1,3,4,5] => [2,1,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,3,1,4,5] => [2,3,1,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,3,4,1,5] => [2,3,4,1,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,3,4,5,1] => [2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,1,2,4,5] => [1,3,2,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,1,4,2,5] => [1,3,4,2,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[3,1,4,5,2] => [1,3,4,5,2] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,1,2,3,5] => [1,2,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,1,2,5,3] => [1,2,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,2,1,3,5] => [2,1,4,3,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[4,2,1,5,3] => [2,1,4,5,3] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,1,2,3,4] => [1,2,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,2,1,3,4] => [2,1,3,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,2,3,1,4] => [2,3,1,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[5,3,1,2,4] => [1,3,2,5,4] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,3,4,5,6] => [2,1,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,3,1,4,5,6] => [2,3,1,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,3,4,1,5,6] => [2,3,4,1,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,3,4,5,1,6] => [2,3,4,5,1,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,3,4,5,6,1] => [2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,1,2,4,5,6] => [1,3,2,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,1,4,2,5,6] => [1,3,4,2,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,1,4,5,2,6] => [1,3,4,5,2,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[3,1,4,5,6,2] => [1,3,4,5,6,2] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,1,2,3,5,6] => [1,2,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,1,2,5,3,6] => [1,2,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,1,2,5,6,3] => [1,2,4,5,6,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,2,1,3,5,6] => [2,1,4,3,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,2,1,5,3,6] => [2,1,4,5,3,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[4,2,1,5,6,3] => [2,1,4,5,6,3] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,1,2,3,4,6] => [1,2,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,1,2,3,6,4] => [1,2,3,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,2,1,3,4,6] => [2,1,3,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,2,1,3,6,4] => [2,1,3,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,2,3,1,4,6] => [2,3,1,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,2,3,1,6,4] => [2,3,1,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,3,1,2,4,6] => [1,3,2,5,4,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[5,3,1,2,6,4] => [1,3,2,5,6,4] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,1,2,3,4,5] => [1,2,3,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,2,1,3,4,5] => [2,1,3,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,2,3,1,4,5] => [2,3,1,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,2,3,4,1,5] => [2,3,4,1,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,3,1,2,4,5] => [1,3,2,4,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,3,1,4,2,5] => [1,3,4,2,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,4,1,2,3,5] => [1,2,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[6,4,2,1,3,5] => [2,1,4,3,6,5] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
                    
                        
                search for individual values
                        
            
                            searching the database for the individual values of this statistic
                        
                    
                    
                    /
                    
                        
			search for generating function
                        
                            searching the database for statistics with the same generating function
                        
                    
                    
                Description
            The leading coefficient of the Poincare polynomial of the poset cone.
For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$.
Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$.
This statistic records its leading coefficient.
	For a poset $P$ on $\{1,\dots,n\}$, let $\mathcal K_P = \{\vec x\in\mathbb R^n| x_i < x_j \text{ for } i < _P j\}$. Furthermore let $\mathcal L(\mathcal A)$ be the intersection lattice of the braid arrangement $A_{n-1}$ and let $\mathcal L^{int} = \{ X \in \mathcal L(\mathcal A) | X \cap \mathcal K_P \neq \emptyset \}$.
Then the Poincare polynomial of the poset cone is $Poin(t) = \sum_{X\in\mathcal L^{int}} |\mu(0, X)| t^{codim X}$.
This statistic records its leading coefficient.
Map
            pattern poset
	    
	Description
            The pattern poset of a permutation.
This is the poset of all non-empty permutations that occur in the given permutation as a pattern, ordered by pattern containment.
	This is the poset of all non-empty permutations that occur in the given permutation as a pattern, ordered by pattern containment.
Map
            cycle-as-one-line notation
	    
	Description
            Return the permutation obtained by concatenating the cycles of a permutation, each written with minimal element first, sorted by minimal element.
	Map
            inverse Foata bijection
	    
	Description
            The inverse of Foata's bijection.
See Mp00067Foata bijection.
	See Mp00067Foata bijection.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!