Identifier
Identifier
Values
[1,0] generating graphics... => 1
[1,0,1,0] generating graphics... => 2
[1,1,0,0] generating graphics... => 2
[1,0,1,0,1,0] generating graphics... => 2
[1,0,1,1,0,0] generating graphics... => 2
[1,1,0,0,1,0] generating graphics... => 2
[1,1,0,1,0,0] generating graphics... => 3
[1,1,1,0,0,0] generating graphics... => 3
[1,0,1,0,1,0,1,0] generating graphics... => 2
[1,0,1,0,1,1,0,0] generating graphics... => 2
[1,0,1,1,0,0,1,0] generating graphics... => 2
[1,0,1,1,0,1,0,0] generating graphics... => 3
[1,0,1,1,1,0,0,0] generating graphics... => 3
[1,1,0,0,1,0,1,0] generating graphics... => 2
[1,1,0,0,1,1,0,0] generating graphics... => 2
[1,1,0,1,0,0,1,0] generating graphics... => 3
[1,1,0,1,0,1,0,0] generating graphics... => 3
[1,1,0,1,1,0,0,0] generating graphics... => 3
[1,1,1,0,0,0,1,0] generating graphics... => 3
[1,1,1,0,0,1,0,0] generating graphics... => 3
[1,1,1,0,1,0,0,0] generating graphics... => 4
[1,1,1,1,0,0,0,0] generating graphics... => 4
[1,0,1,0,1,0,1,0,1,0] generating graphics... => 2
[1,0,1,0,1,0,1,1,0,0] generating graphics... => 2
[1,0,1,0,1,1,0,0,1,0] generating graphics... => 2
[1,0,1,0,1,1,0,1,0,0] generating graphics... => 3
[1,0,1,0,1,1,1,0,0,0] generating graphics... => 3
[1,0,1,1,0,0,1,0,1,0] generating graphics... => 2
[1,0,1,1,0,0,1,1,0,0] generating graphics... => 2
[1,0,1,1,0,1,0,0,1,0] generating graphics... => 3
[1,0,1,1,0,1,0,1,0,0] generating graphics... => 3
[1,0,1,1,0,1,1,0,0,0] generating graphics... => 3
[1,0,1,1,1,0,0,0,1,0] generating graphics... => 3
[1,0,1,1,1,0,0,1,0,0] generating graphics... => 3
[1,0,1,1,1,0,1,0,0,0] generating graphics... => 4
[1,0,1,1,1,1,0,0,0,0] generating graphics... => 4
[1,1,0,0,1,0,1,0,1,0] generating graphics... => 2
[1,1,0,0,1,0,1,1,0,0] generating graphics... => 2
[1,1,0,0,1,1,0,0,1,0] generating graphics... => 2
[1,1,0,0,1,1,0,1,0,0] generating graphics... => 3
[1,1,0,0,1,1,1,0,0,0] generating graphics... => 3
[1,1,0,1,0,0,1,0,1,0] generating graphics... => 3
[1,1,0,1,0,0,1,1,0,0] generating graphics... => 3
[1,1,0,1,0,1,0,0,1,0] generating graphics... => 3
[1,1,0,1,0,1,0,1,0,0] generating graphics... => 3
[1,1,0,1,0,1,1,0,0,0] generating graphics... => 3
[1,1,0,1,1,0,0,0,1,0] generating graphics... => 3
[1,1,0,1,1,0,0,1,0,0] generating graphics... => 3
[1,1,0,1,1,0,1,0,0,0] generating graphics... => 4
[1,1,0,1,1,1,0,0,0,0] generating graphics... => 4
[1,1,1,0,0,0,1,0,1,0] generating graphics... => 3
[1,1,1,0,0,0,1,1,0,0] generating graphics... => 3
[1,1,1,0,0,1,0,0,1,0] generating graphics... => 3
[1,1,1,0,0,1,0,1,0,0] generating graphics... => 3
[1,1,1,0,0,1,1,0,0,0] generating graphics... => 3
[1,1,1,0,1,0,0,0,1,0] generating graphics... => 4
[1,1,1,0,1,0,0,1,0,0] generating graphics... => 4
[1,1,1,0,1,0,1,0,0,0] generating graphics... => 4
[1,1,1,0,1,1,0,0,0,0] generating graphics... => 4
[1,1,1,1,0,0,0,0,1,0] generating graphics... => 4
[1,1,1,1,0,0,0,1,0,0] generating graphics... => 4
[1,1,1,1,0,0,1,0,0,0] generating graphics... => 4
[1,1,1,1,0,1,0,0,0,0] generating graphics... => 5
[1,1,1,1,1,0,0,0,0,0] generating graphics... => 5
click to show generating function       
Description
The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.
Code



DeclareOperation("loewylengthtauA",[IsList]);

InstallMethod(loewylengthtauA, "for a representation of a quiver", [IsList],0,function(LIST)

local M,N,R1,U1,R2,U2,A,L,i,j,W,d,WW,n,l,LL,C,T;

A:=LIST[1];
C:=AlgebraAsModuleOverEnvelopingAlgebra(A);
T:=DTr(C);
return(LoewyLength(T));
end);


Created
Mar 11, 2020 at 23:09 by Rene Marczinzik
Updated
Mar 11, 2020 at 23:09 by Rene Marczinzik