Identifier
-
Mp00179:
Integer partitions
—to skew partition⟶
Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001510: Posets ⟶ ℤ
Values
=>
Cc0002;cc-rep-0
Cc0028;cc-rep-1
Cc0014;cc-rep
[1]=>[[1],[]]=>([],1)=>1
[2]=>[[2],[]]=>([(0,1)],2)=>1
[1,1]=>[[1,1],[]]=>([(0,1)],2)=>1
[3]=>[[3],[]]=>([(0,2),(2,1)],3)=>1
[2,1]=>[[2,1],[]]=>([(0,1),(0,2)],3)=>0
[1,1,1]=>[[1,1,1],[]]=>([(0,2),(2,1)],3)=>1
[4]=>[[4],[]]=>([(0,3),(2,1),(3,2)],4)=>1
[3,1]=>[[3,1],[]]=>([(0,2),(0,3),(3,1)],4)=>1
[2,2]=>[[2,2],[]]=>([(0,1),(0,2),(1,3),(2,3)],4)=>2
[2,1,1]=>[[2,1,1],[]]=>([(0,2),(0,3),(3,1)],4)=>1
[1,1,1,1]=>[[1,1,1,1],[]]=>([(0,3),(2,1),(3,2)],4)=>1
[5]=>[[5],[]]=>([(0,4),(2,3),(3,1),(4,2)],5)=>1
[4,1]=>[[4,1],[]]=>([(0,2),(0,4),(3,1),(4,3)],5)=>0
[3,2]=>[[3,2],[]]=>([(0,2),(0,3),(2,4),(3,1),(3,4)],5)=>1
[3,1,1]=>[[3,1,1],[]]=>([(0,3),(0,4),(3,2),(4,1)],5)=>2
[2,2,1]=>[[2,2,1],[]]=>([(0,2),(0,3),(2,4),(3,1),(3,4)],5)=>1
[2,1,1,1]=>[[2,1,1,1],[]]=>([(0,2),(0,4),(3,1),(4,3)],5)=>0
[1,1,1,1,1]=>[[1,1,1,1,1],[]]=>([(0,4),(2,3),(3,1),(4,2)],5)=>1
[6]=>[[6],[]]=>([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>1
[5,1]=>[[5,1],[]]=>([(0,2),(0,5),(3,4),(4,1),(5,3)],6)=>1
[4,2]=>[[4,2],[]]=>([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)=>3
[4,1,1]=>[[4,1,1],[]]=>([(0,4),(0,5),(3,2),(4,3),(5,1)],6)=>2
[3,3]=>[[3,3],[]]=>([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>3
[3,2,1]=>[[3,2,1],[]]=>([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)=>0
[3,1,1,1]=>[[3,1,1,1],[]]=>([(0,4),(0,5),(3,2),(4,3),(5,1)],6)=>2
[2,2,2]=>[[2,2,2],[]]=>([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>3
[2,2,1,1]=>[[2,2,1,1],[]]=>([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)=>3
[2,1,1,1,1]=>[[2,1,1,1,1],[]]=>([(0,2),(0,5),(3,4),(4,1),(5,3)],6)=>1
[1,1,1,1,1,1]=>[[1,1,1,1,1,1],[]]=>([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of self-evacuating linear extensions of a finite poset.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!