Identifier
Values
=>
Cc0002;cc-rep-0 Cc0028;cc-rep-1 Cc0014;cc-rep
[1]=>[[1],[]]=>([],1)=>1 [2]=>[[2],[]]=>([(0,1)],2)=>1 [1,1]=>[[1,1],[]]=>([(0,1)],2)=>1 [3]=>[[3],[]]=>([(0,2),(2,1)],3)=>1 [2,1]=>[[2,1],[]]=>([(0,1),(0,2)],3)=>0 [1,1,1]=>[[1,1,1],[]]=>([(0,2),(2,1)],3)=>1 [4]=>[[4],[]]=>([(0,3),(2,1),(3,2)],4)=>1 [3,1]=>[[3,1],[]]=>([(0,2),(0,3),(3,1)],4)=>1 [2,2]=>[[2,2],[]]=>([(0,1),(0,2),(1,3),(2,3)],4)=>2 [2,1,1]=>[[2,1,1],[]]=>([(0,2),(0,3),(3,1)],4)=>1 [1,1,1,1]=>[[1,1,1,1],[]]=>([(0,3),(2,1),(3,2)],4)=>1 [5]=>[[5],[]]=>([(0,4),(2,3),(3,1),(4,2)],5)=>1 [4,1]=>[[4,1],[]]=>([(0,2),(0,4),(3,1),(4,3)],5)=>0 [3,2]=>[[3,2],[]]=>([(0,2),(0,3),(2,4),(3,1),(3,4)],5)=>1 [3,1,1]=>[[3,1,1],[]]=>([(0,3),(0,4),(3,2),(4,1)],5)=>2 [2,2,1]=>[[2,2,1],[]]=>([(0,2),(0,3),(2,4),(3,1),(3,4)],5)=>1 [2,1,1,1]=>[[2,1,1,1],[]]=>([(0,2),(0,4),(3,1),(4,3)],5)=>0 [1,1,1,1,1]=>[[1,1,1,1,1],[]]=>([(0,4),(2,3),(3,1),(4,2)],5)=>1 [6]=>[[6],[]]=>([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>1 [5,1]=>[[5,1],[]]=>([(0,2),(0,5),(3,4),(4,1),(5,3)],6)=>1 [4,2]=>[[4,2],[]]=>([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)=>3 [4,1,1]=>[[4,1,1],[]]=>([(0,4),(0,5),(3,2),(4,3),(5,1)],6)=>2 [3,3]=>[[3,3],[]]=>([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>3 [3,2,1]=>[[3,2,1],[]]=>([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)=>0 [3,1,1,1]=>[[3,1,1,1],[]]=>([(0,4),(0,5),(3,2),(4,3),(5,1)],6)=>2 [2,2,2]=>[[2,2,2],[]]=>([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>3 [2,2,1,1]=>[[2,2,1,1],[]]=>([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)=>3 [2,1,1,1,1]=>[[2,1,1,1,1],[]]=>([(0,2),(0,5),(3,4),(4,1),(5,3)],6)=>1 [1,1,1,1,1,1]=>[[1,1,1,1,1,1],[]]=>([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of self-evacuating linear extensions of a finite poset.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.