Identifier
-
Mp00202:
Integer partitions
—first row removal⟶
Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00200: Binary words —twist⟶ Binary words
St001491: Binary words ⟶ ℤ
Values
[1,1,1] => [1,1] => 110 => 010 => 1
[2,1,1] => [1,1] => 110 => 010 => 1
[1,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[3,1,1] => [1,1] => 110 => 010 => 1
[2,2,1] => [2,1] => 1010 => 0010 => 1
[2,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[4,1,1] => [1,1] => 110 => 010 => 1
[3,2,1] => [2,1] => 1010 => 0010 => 1
[3,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[2,2,2] => [2,2] => 1100 => 0100 => 1
[5,1,1] => [1,1] => 110 => 010 => 1
[4,2,1] => [2,1] => 1010 => 0010 => 1
[4,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[3,2,2] => [2,2] => 1100 => 0100 => 1
[6,1,1] => [1,1] => 110 => 010 => 1
[5,2,1] => [2,1] => 1010 => 0010 => 1
[5,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[4,2,2] => [2,2] => 1100 => 0100 => 1
[7,1,1] => [1,1] => 110 => 010 => 1
[6,2,1] => [2,1] => 1010 => 0010 => 1
[6,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[5,2,2] => [2,2] => 1100 => 0100 => 1
[8,1,1] => [1,1] => 110 => 010 => 1
[7,2,1] => [2,1] => 1010 => 0010 => 1
[7,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[6,2,2] => [2,2] => 1100 => 0100 => 1
[9,1,1] => [1,1] => 110 => 010 => 1
[8,2,1] => [2,1] => 1010 => 0010 => 1
[8,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[7,2,2] => [2,2] => 1100 => 0100 => 1
[10,1,1] => [1,1] => 110 => 010 => 1
[9,2,1] => [2,1] => 1010 => 0010 => 1
[9,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[8,2,2] => [2,2] => 1100 => 0100 => 1
[11,1,1] => [1,1] => 110 => 010 => 1
[10,2,1] => [2,1] => 1010 => 0010 => 1
[10,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[9,2,2] => [2,2] => 1100 => 0100 => 1
[12,1,1] => [1,1] => 110 => 010 => 1
[11,2,1] => [2,1] => 1010 => 0010 => 1
[11,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[10,2,2] => [2,2] => 1100 => 0100 => 1
[13,1,1] => [1,1] => 110 => 010 => 1
[12,2,1] => [2,1] => 1010 => 0010 => 1
[12,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[11,2,2] => [2,2] => 1100 => 0100 => 1
[14,1,1] => [1,1] => 110 => 010 => 1
[13,2,1] => [2,1] => 1010 => 0010 => 1
[13,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[12,2,2] => [2,2] => 1100 => 0100 => 1
[15,1,1] => [1,1] => 110 => 010 => 1
[14,2,1] => [2,1] => 1010 => 0010 => 1
[14,1,1,1] => [1,1,1] => 1110 => 0110 => 2
[13,2,2] => [2,2] => 1100 => 0100 => 1
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let An=K[x]/(xn).
We associate to a nonempty subset S of an (n-1)-set the module MS, which is the direct sum of An-modules with indecomposable non-projective direct summands of dimension i when i is in S (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of MS. We decode the subset as a binary word so that for example the subset S={1,3} of {1,2,3} is decoded as 101.
Let An=K[x]/(xn).
We associate to a nonempty subset S of an (n-1)-set the module MS, which is the direct sum of An-modules with indecomposable non-projective direct summands of dimension i when i is in S (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of MS. We decode the subset as a binary word so that for example the subset S={1,3} of {1,2,3} is decoded as 101.
Map
first row removal
Description
Removes the first entry of an integer partition
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
twist
Description
Return the binary word with first letter inverted.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!