Identifier
Values
[[2,2,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,2,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[2,2,2],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,2],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,2,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[2,2,2,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[2,2,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,2,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,2,1],[1,1]] => [1,1] => 110 => 010 => 1
[[5,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,3,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,2,2],[1,1]] => [1,1] => 110 => 010 => 1
[[4,3,2],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,2,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,2,2,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,2,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,2,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,3],[2,2]] => [2,2] => 1100 => 0100 => 1
[[2,2,2,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,2,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,2,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[2,2,2,2],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[2,2,2,1,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[2,2,1,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,2,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,2,1],[1,1]] => [1,1] => 110 => 010 => 1
[[6,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,3,1],[1,1]] => [1,1] => 110 => 010 => 1
[[5,3,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,2,2],[1,1]] => [1,1] => 110 => 010 => 1
[[5,3,2],[2,2]] => [2,2] => 1100 => 0100 => 1
[[5,2,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,2,2,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[4,2,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[5,2,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,4,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,2],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,2],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,3,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,2,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,3,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,3,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,3,3],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,2,2,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,3,2,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,2,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,2,2,2],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,2,2,1,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,2,1,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,2,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,3],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,3,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[2,2,2,2],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,2,2],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,2,2,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[2,2,2,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,2,1,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,2,2,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[2,2,2,2,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[2,2,2,1,1,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[2,2,1,1,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,2,1,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[6,2,1],[1,1]] => [1,1] => 110 => 010 => 1
[[7,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,3,1],[1,1]] => [1,1] => 110 => 010 => 1
[[6,3,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,2,2],[1,1]] => [1,1] => 110 => 010 => 1
[[6,3,2],[2,2]] => [2,2] => 1100 => 0100 => 1
[[6,2,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,2,2,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[5,2,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[6,2,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,4,1],[1,1]] => [1,1] => 110 => 010 => 1
[[5,4,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,3,2],[1,1]] => [1,1] => 110 => 010 => 1
[[5,4,2],[2,2]] => [2,2] => 1100 => 0100 => 1
[[5,3,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,3,2,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[4,3,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[5,3,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,3,3],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,2,2,1],[1,1]] => [1,1] => 110 => 010 => 1
[[5,3,2,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[5,2,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,2,2,2],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[4,2,2,1,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[4,2,1,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[5,2,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,4,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,4,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,3],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,3],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,3,3],[2,1]] => [2,1] => 1010 => 0010 => 1
>>> Load all 207 entries. <<<
[[3,3,3,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,3,2,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,2,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,3,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,2,2],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,3,2,1,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,3,1,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,3,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,3,3,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,2,2,2],[1,1]] => [1,1] => 110 => 010 => 1
[[4,3,2,2],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,2,2,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,2,2,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,3,2,1,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,2,2,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,2,2,2,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,2,2,1,1,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,2,1,1,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,2,1,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,3,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,2,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,2,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,1,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,3,2],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,3,3,1,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[2,2,2,2,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,2,2,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,2,2,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[2,2,2,1,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,2,1,1,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,2,2,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[2,2,2,2,2],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[2,2,2,2,1,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[2,2,2,1,1,1,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[2,2,1,1,1,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,2,1,1,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[2,2,2,1,1,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[2,2,2,2,1,1,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,2,2,1,1,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,2,1,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,2,2,2,1,1],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[4,3,2,1,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,3,3,1,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[5,3,2,1],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,3,3,1],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,3,3,1],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,3,2],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[4,4,2],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,4,3],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,3,3],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,3,3],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[4,4,3],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,4,4],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,2,2],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,3,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,3,2],[1,1]] => [1,1] => 110 => 010 => 1
[[2,2,2,2,2],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,3,3],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,3,3,3],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,3,3],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4,1],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4,2],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[5,4,4],[2,2]] => [2,2] => 1100 => 0100 => 1
[[5,5,4],[2,2]] => [2,2] => 1100 => 0100 => 1
[[5,5,5],[2,2]] => [2,2] => 1100 => 0100 => 1
[[5,4,3],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,5,3],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,3,3],[1,1]] => [1,1] => 110 => 010 => 1
[[4,3,3,3],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[4,4,3,3],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[5,4,3],[1,1]] => [1,1] => 110 => 010 => 1
[[5,5,3],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4,3],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[5,4,4],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,5,4],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,5,5],[2,1]] => [2,1] => 1010 => 0010 => 1
[[5,4,4],[1,1]] => [1,1] => 110 => 010 => 1
[[5,5,4],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4,4],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[5,5,5],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4,2],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,4,3,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,3,3,2],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,3,3,2],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[4,4,3,2],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4,2],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,4,4,2],[1,1]] => [1,1] => 110 => 010 => 1
[[2,2,2,2,2,2],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[3,3,3,2,2],[1,1]] => [1,1] => 110 => 010 => 1
[[2,2,2,2,2,2],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,3,3,2],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4,3],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,4,3,3],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,3,3,3],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,3,3,3],[1,1,1]] => [1,1,1] => 1110 => 0110 => 2
[[4,4,3,3],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4,3],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,4,4,3],[1,1]] => [1,1] => 110 => 010 => 1
[[4,4,4,4],[2,2]] => [2,2] => 1100 => 0100 => 1
[[4,4,4,4],[2,1]] => [2,1] => 1010 => 0010 => 1
[[4,4,4,4],[1,1]] => [1,1] => 110 => 010 => 1
[[3,3,3,3,3],[2,2]] => [2,2] => 1100 => 0100 => 1
[[3,3,3,3,3],[2,1]] => [2,1] => 1010 => 0010 => 1
[[3,3,3,3,3],[1,1]] => [1,1] => 110 => 010 => 1
search for individual values
searching the database for the individual values of this statistic
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let $A_n=K[x]/(x^n)$.
We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Map
twist
Description
Return the binary word with first letter inverted.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
inner shape
Description
The inner shape of a skew partition.