Identifier
-
Mp00307:
Posets
—promotion cycle type⟶
Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
St001488: Skew partitions ⟶ ℤ
Values
([],1) => [1] => [[1],[]] => 1
([],2) => [2] => [[2],[]] => 2
([(0,1)],2) => [1] => [[1],[]] => 1
([(1,2)],3) => [3] => [[3],[]] => 2
([(0,1),(0,2)],3) => [2] => [[2],[]] => 2
([(0,2),(2,1)],3) => [1] => [[1],[]] => 1
([(0,2),(1,2)],3) => [2] => [[2],[]] => 2
([(0,2),(0,3),(3,1)],4) => [3] => [[3],[]] => 2
([(0,1),(0,2),(1,3),(2,3)],4) => [2] => [[2],[]] => 2
([(1,2),(2,3)],4) => [4] => [[4],[]] => 2
([(0,3),(3,1),(3,2)],4) => [2] => [[2],[]] => 2
([(0,3),(1,3),(3,2)],4) => [2] => [[2],[]] => 2
([(0,3),(1,2),(1,3)],4) => [3,2] => [[3,2],[]] => 3
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => [[2,2],[]] => 2
([(0,3),(2,1),(3,2)],4) => [1] => [[1],[]] => 1
([(0,3),(1,2),(2,3)],4) => [3] => [[3],[]] => 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => [2] => [[2],[]] => 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => [[3,2],[]] => 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => [2,2] => [[2,2],[]] => 2
([(0,4),(1,4),(4,2),(4,3)],5) => [2,2] => [[2,2],[]] => 2
([(0,4),(1,4),(2,3),(4,2)],5) => [2] => [[2],[]] => 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => [[3,2],[]] => 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => [2,2] => [[2,2],[]] => 2
([(0,2),(0,4),(3,1),(4,3)],5) => [4] => [[4],[]] => 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => [3] => [[3],[]] => 2
([(1,4),(3,2),(4,3)],5) => [5] => [[5],[]] => 2
([(0,3),(3,4),(4,1),(4,2)],5) => [2] => [[2],[]] => 2
([(0,4),(1,2),(2,4),(4,3)],5) => [3] => [[3],[]] => 2
([(0,4),(3,2),(4,1),(4,3)],5) => [3] => [[3],[]] => 2
([(0,4),(2,3),(3,1),(4,2)],5) => [1] => [[1],[]] => 1
([(0,4),(1,2),(2,3),(3,4)],5) => [4] => [[4],[]] => 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => [2] => [[2],[]] => 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => [2,2] => [[2,2],[]] => 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [2,2] => [[2,2],[]] => 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => [2,2] => [[2,2],[]] => 2
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [2] => [[2],[]] => 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => [2,2] => [[2,2],[]] => 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => [3,2] => [[3,2],[]] => 3
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => [2,2] => [[2,2],[]] => 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => [[3,2],[]] => 3
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => [3] => [[3],[]] => 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => [4] => [[4],[]] => 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => [2] => [[2],[]] => 2
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => [[5],[]] => 2
([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => [2] => [[2],[]] => 2
([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => [4] => [[4],[]] => 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => [2] => [[2],[]] => 2
([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [4] => [[4],[]] => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => [2,2] => [[2,2],[]] => 2
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => [3,2] => [[3,2],[]] => 3
([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => [3] => [[3],[]] => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => [[1],[]] => 1
([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [3] => [[3],[]] => 2
([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => [[5],[]] => 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => [2] => [[2],[]] => 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => [3] => [[3],[]] => 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7) => [2,2] => [[2,2],[]] => 2
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7) => [2,2] => [[2,2],[]] => 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => [2,2] => [[2,2],[]] => 2
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7) => [2,2] => [[2,2],[]] => 2
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7) => [5] => [[5],[]] => 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => [2] => [[2],[]] => 2
([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => [2] => [[2],[]] => 2
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7) => [2,2] => [[2,2],[]] => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7) => [2,2] => [[2,2],[]] => 2
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => [3,2] => [[3,2],[]] => 3
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => [4] => [[4],[]] => 2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => [2] => [[2],[]] => 2
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7) => [2,2] => [[2,2],[]] => 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => [3,2] => [[3,2],[]] => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7) => [2,2] => [[2,2],[]] => 2
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7) => [2,2] => [[2,2],[]] => 2
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => [3] => [[3],[]] => 2
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7) => [3,2] => [[3,2],[]] => 3
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => [5] => [[5],[]] => 2
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => [3] => [[3],[]] => 2
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7) => [2,2] => [[2,2],[]] => 2
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7) => [3,2] => [[3,2],[]] => 3
([(0,5),(3,4),(4,6),(5,3),(6,1),(6,2)],7) => [2] => [[2],[]] => 2
([(0,5),(3,4),(4,1),(5,6),(6,2),(6,3)],7) => [4] => [[4],[]] => 2
([(0,6),(3,5),(4,3),(5,1),(6,2),(6,4)],7) => [5] => [[5],[]] => 2
([(0,5),(3,6),(4,1),(5,3),(6,2),(6,4)],7) => [3] => [[3],[]] => 2
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [1] => [[1],[]] => 1
([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7) => [3] => [[3],[]] => 2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => [3] => [[3],[]] => 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => [2] => [[2],[]] => 2
([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7) => [4] => [[4],[]] => 2
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => [2] => [[2],[]] => 2
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => [4] => [[4],[]] => 2
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => [3,2] => [[3,2],[]] => 3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of corners of a skew partition.
This is also known as the number of removable cells of the skew partition.
This is also known as the number of removable cells of the skew partition.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
promotion cycle type
Description
The cycle type of promotion on the linear extensions of a poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!