Identifier
Values
=>
Cc0009;cc-rep-0
{{1}}=>[1]=>1 {{1,2}}=>[2,1]=>1 {{1},{2}}=>[1,2]=>2 {{1,2,3}}=>[2,3,1]=>1 {{1,2},{3}}=>[2,1,3]=>2 {{1,3},{2}}=>[3,2,1]=>2 {{1},{2,3}}=>[1,3,2]=>2 {{1},{2},{3}}=>[1,2,3]=>3 {{1,2,3,4}}=>[2,3,4,1]=>1 {{1,2,3},{4}}=>[2,3,1,4]=>2 {{1,2,4},{3}}=>[2,4,3,1]=>2 {{1,2},{3,4}}=>[2,1,4,3]=>2 {{1,2},{3},{4}}=>[2,1,3,4]=>3 {{1,3,4},{2}}=>[3,2,4,1]=>2 {{1,3},{2,4}}=>[3,4,1,2]=>1 {{1,3},{2},{4}}=>[3,2,1,4]=>3 {{1,4},{2,3}}=>[4,3,2,1]=>2 {{1},{2,3,4}}=>[1,3,4,2]=>2 {{1},{2,3},{4}}=>[1,3,2,4]=>3 {{1,4},{2},{3}}=>[4,2,3,1]=>3 {{1},{2,4},{3}}=>[1,4,3,2]=>3 {{1},{2},{3,4}}=>[1,2,4,3]=>3 {{1},{2},{3},{4}}=>[1,2,3,4]=>4 {{1,2,3,4,5}}=>[2,3,4,5,1]=>1 {{1,2,3,4},{5}}=>[2,3,4,1,5]=>2 {{1,2,3,5},{4}}=>[2,3,5,4,1]=>2 {{1,2,3},{4,5}}=>[2,3,1,5,4]=>2 {{1,2,3},{4},{5}}=>[2,3,1,4,5]=>3 {{1,2,4,5},{3}}=>[2,4,3,5,1]=>2 {{1,2,4},{3,5}}=>[2,4,5,1,3]=>1 {{1,2,4},{3},{5}}=>[2,4,3,1,5]=>3 {{1,2,5},{3,4}}=>[2,5,4,3,1]=>2 {{1,2},{3,4,5}}=>[2,1,4,5,3]=>2 {{1,2},{3,4},{5}}=>[2,1,4,3,5]=>3 {{1,2,5},{3},{4}}=>[2,5,3,4,1]=>3 {{1,2},{3,5},{4}}=>[2,1,5,4,3]=>3 {{1,2},{3},{4,5}}=>[2,1,3,5,4]=>3 {{1,2},{3},{4},{5}}=>[2,1,3,4,5]=>4 {{1,3,4,5},{2}}=>[3,2,4,5,1]=>2 {{1,3,4},{2,5}}=>[3,5,4,1,2]=>1 {{1,3,4},{2},{5}}=>[3,2,4,1,5]=>3 {{1,3,5},{2,4}}=>[3,4,5,2,1]=>1 {{1,3},{2,4,5}}=>[3,4,1,5,2]=>1 {{1,3},{2,4},{5}}=>[3,4,1,2,5]=>2 {{1,3,5},{2},{4}}=>[3,2,5,4,1]=>3 {{1,3},{2,5},{4}}=>[3,5,1,4,2]=>2 {{1,3},{2},{4,5}}=>[3,2,1,5,4]=>3 {{1,3},{2},{4},{5}}=>[3,2,1,4,5]=>4 {{1,4,5},{2,3}}=>[4,3,2,5,1]=>2 {{1,4},{2,3,5}}=>[4,3,5,1,2]=>1 {{1,4},{2,3},{5}}=>[4,3,2,1,5]=>3 {{1,5},{2,3,4}}=>[5,3,4,2,1]=>2 {{1},{2,3,4,5}}=>[1,3,4,5,2]=>2 {{1},{2,3,4},{5}}=>[1,3,4,2,5]=>3 {{1,5},{2,3},{4}}=>[5,3,2,4,1]=>3 {{1},{2,3,5},{4}}=>[1,3,5,4,2]=>3 {{1},{2,3},{4,5}}=>[1,3,2,5,4]=>3 {{1},{2,3},{4},{5}}=>[1,3,2,4,5]=>4 {{1,4,5},{2},{3}}=>[4,2,3,5,1]=>3 {{1,4},{2,5},{3}}=>[4,5,3,1,2]=>2 {{1,4},{2},{3,5}}=>[4,2,5,1,3]=>2 {{1,4},{2},{3},{5}}=>[4,2,3,1,5]=>4 {{1,5},{2,4},{3}}=>[5,4,3,2,1]=>3 {{1},{2,4,5},{3}}=>[1,4,3,5,2]=>3 {{1},{2,4},{3,5}}=>[1,4,5,2,3]=>2 {{1},{2,4},{3},{5}}=>[1,4,3,2,5]=>4 {{1,5},{2},{3,4}}=>[5,2,4,3,1]=>3 {{1},{2,5},{3,4}}=>[1,5,4,3,2]=>3 {{1},{2},{3,4,5}}=>[1,2,4,5,3]=>3 {{1},{2},{3,4},{5}}=>[1,2,4,3,5]=>4 {{1,5},{2},{3},{4}}=>[5,2,3,4,1]=>4 {{1},{2,5},{3},{4}}=>[1,5,3,4,2]=>4 {{1},{2},{3,5},{4}}=>[1,2,5,4,3]=>4 {{1},{2},{3},{4,5}}=>[1,2,3,5,4]=>4 {{1},{2},{3},{4},{5}}=>[1,2,3,4,5]=>5 {{1,2,3,4,5,6}}=>[2,3,4,5,6,1]=>1 {{1,2,3,4,5},{6}}=>[2,3,4,5,1,6]=>2 {{1,2,3,4,6},{5}}=>[2,3,4,6,5,1]=>2 {{1,2,3,4},{5,6}}=>[2,3,4,1,6,5]=>2 {{1,2,3,4},{5},{6}}=>[2,3,4,1,5,6]=>3 {{1,2,3,5,6},{4}}=>[2,3,5,4,6,1]=>2 {{1,2,3,5},{4,6}}=>[2,3,5,6,1,4]=>1 {{1,2,3,5},{4},{6}}=>[2,3,5,4,1,6]=>3 {{1,2,3,6},{4,5}}=>[2,3,6,5,4,1]=>2 {{1,2,3},{4,5,6}}=>[2,3,1,5,6,4]=>2 {{1,2,3},{4,5},{6}}=>[2,3,1,5,4,6]=>3 {{1,2,3,6},{4},{5}}=>[2,3,6,4,5,1]=>3 {{1,2,3},{4,6},{5}}=>[2,3,1,6,5,4]=>3 {{1,2,3},{4},{5,6}}=>[2,3,1,4,6,5]=>3 {{1,2,3},{4},{5},{6}}=>[2,3,1,4,5,6]=>4 {{1,2,4,5,6},{3}}=>[2,4,3,5,6,1]=>2 {{1,2,4,5},{3,6}}=>[2,4,6,5,1,3]=>1 {{1,2,4,5},{3},{6}}=>[2,4,3,5,1,6]=>3 {{1,2,4,6},{3,5}}=>[2,4,5,6,3,1]=>1 {{1,2,4},{3,5,6}}=>[2,4,5,1,6,3]=>1 {{1,2,4},{3,5},{6}}=>[2,4,5,1,3,6]=>2 {{1,2,4,6},{3},{5}}=>[2,4,3,6,5,1]=>3 {{1,2,4},{3,6},{5}}=>[2,4,6,1,5,3]=>2 {{1,2,4},{3},{5,6}}=>[2,4,3,1,6,5]=>3 {{1,2,4},{3},{5},{6}}=>[2,4,3,1,5,6]=>4 {{1,2,5,6},{3,4}}=>[2,5,4,3,6,1]=>2 {{1,2,5},{3,4,6}}=>[2,5,4,6,1,3]=>1 {{1,2,5},{3,4},{6}}=>[2,5,4,3,1,6]=>3 {{1,2,6},{3,4,5}}=>[2,6,4,5,3,1]=>2 {{1,2},{3,4,5,6}}=>[2,1,4,5,6,3]=>2 {{1,2},{3,4,5},{6}}=>[2,1,4,5,3,6]=>3 {{1,2,6},{3,4},{5}}=>[2,6,4,3,5,1]=>3 {{1,2},{3,4,6},{5}}=>[2,1,4,6,5,3]=>3 {{1,2},{3,4},{5,6}}=>[2,1,4,3,6,5]=>3 {{1,2},{3,4},{5},{6}}=>[2,1,4,3,5,6]=>4 {{1,2,5,6},{3},{4}}=>[2,5,3,4,6,1]=>3 {{1,2,5},{3,6},{4}}=>[2,5,6,4,1,3]=>2 {{1,2,5},{3},{4,6}}=>[2,5,3,6,1,4]=>2 {{1,2,5},{3},{4},{6}}=>[2,5,3,4,1,6]=>4 {{1,2,6},{3,5},{4}}=>[2,6,5,4,3,1]=>3 {{1,2},{3,5,6},{4}}=>[2,1,5,4,6,3]=>3 {{1,2},{3,5},{4,6}}=>[2,1,5,6,3,4]=>2 {{1,2},{3,5},{4},{6}}=>[2,1,5,4,3,6]=>4 {{1,2,6},{3},{4,5}}=>[2,6,3,5,4,1]=>3 {{1,2},{3,6},{4,5}}=>[2,1,6,5,4,3]=>3 {{1,2},{3},{4,5,6}}=>[2,1,3,5,6,4]=>3 {{1,2},{3},{4,5},{6}}=>[2,1,3,5,4,6]=>4 {{1,2,6},{3},{4},{5}}=>[2,6,3,4,5,1]=>4 {{1,2},{3,6},{4},{5}}=>[2,1,6,4,5,3]=>4 {{1,2},{3},{4,6},{5}}=>[2,1,3,6,5,4]=>4 {{1,2},{3},{4},{5,6}}=>[2,1,3,4,6,5]=>4 {{1,2},{3},{4},{5},{6}}=>[2,1,3,4,5,6]=>5 {{1,3,4,5,6},{2}}=>[3,2,4,5,6,1]=>2 {{1,3,4,5},{2,6}}=>[3,6,4,5,1,2]=>1 {{1,3,4,5},{2},{6}}=>[3,2,4,5,1,6]=>3 {{1,3,4,6},{2,5}}=>[3,5,4,6,2,1]=>1 {{1,3,4},{2,5,6}}=>[3,5,4,1,6,2]=>1 {{1,3,4},{2,5},{6}}=>[3,5,4,1,2,6]=>2 {{1,3,4,6},{2},{5}}=>[3,2,4,6,5,1]=>3 {{1,3,4},{2,6},{5}}=>[3,6,4,1,5,2]=>2 {{1,3,4},{2},{5,6}}=>[3,2,4,1,6,5]=>3 {{1,3,4},{2},{5},{6}}=>[3,2,4,1,5,6]=>4 {{1,3,5,6},{2,4}}=>[3,4,5,2,6,1]=>1 {{1,3,5},{2,4,6}}=>[3,4,5,6,1,2]=>1 {{1,3,5},{2,4},{6}}=>[3,4,5,2,1,6]=>2 {{1,3,6},{2,4,5}}=>[3,4,6,5,2,1]=>1 {{1,3},{2,4,5,6}}=>[3,4,1,5,6,2]=>1 {{1,3},{2,4,5},{6}}=>[3,4,1,5,2,6]=>2 {{1,3,6},{2,4},{5}}=>[3,4,6,2,5,1]=>2 {{1,3},{2,4,6},{5}}=>[3,4,1,6,5,2]=>2 {{1,3},{2,4},{5,6}}=>[3,4,1,2,6,5]=>2 {{1,3},{2,4},{5},{6}}=>[3,4,1,2,5,6]=>3 {{1,3,5,6},{2},{4}}=>[3,2,5,4,6,1]=>3 {{1,3,5},{2,6},{4}}=>[3,6,5,4,1,2]=>2 {{1,3,5},{2},{4,6}}=>[3,2,5,6,1,4]=>2 {{1,3,5},{2},{4},{6}}=>[3,2,5,4,1,6]=>4 {{1,3,6},{2,5},{4}}=>[3,5,6,4,2,1]=>2 {{1,3},{2,5,6},{4}}=>[3,5,1,4,6,2]=>2 {{1,3},{2,5},{4,6}}=>[3,5,1,6,2,4]=>1 {{1,3},{2,5},{4},{6}}=>[3,5,1,4,2,6]=>3 {{1,3,6},{2},{4,5}}=>[3,2,6,5,4,1]=>3 {{1,3},{2,6},{4,5}}=>[3,6,1,5,4,2]=>2 {{1,3},{2},{4,5,6}}=>[3,2,1,5,6,4]=>3 {{1,3},{2},{4,5},{6}}=>[3,2,1,5,4,6]=>4 {{1,3,6},{2},{4},{5}}=>[3,2,6,4,5,1]=>4 {{1,3},{2,6},{4},{5}}=>[3,6,1,4,5,2]=>3 {{1,3},{2},{4,6},{5}}=>[3,2,1,6,5,4]=>4 {{1,3},{2},{4},{5,6}}=>[3,2,1,4,6,5]=>4 {{1,3},{2},{4},{5},{6}}=>[3,2,1,4,5,6]=>5 {{1,4,5,6},{2,3}}=>[4,3,2,5,6,1]=>2 {{1,4,5},{2,3,6}}=>[4,3,6,5,1,2]=>1 {{1,4,5},{2,3},{6}}=>[4,3,2,5,1,6]=>3 {{1,4,6},{2,3,5}}=>[4,3,5,6,2,1]=>1 {{1,4},{2,3,5,6}}=>[4,3,5,1,6,2]=>1 {{1,4},{2,3,5},{6}}=>[4,3,5,1,2,6]=>2 {{1,4,6},{2,3},{5}}=>[4,3,2,6,5,1]=>3 {{1,4},{2,3,6},{5}}=>[4,3,6,1,5,2]=>2 {{1,4},{2,3},{5,6}}=>[4,3,2,1,6,5]=>3 {{1,4},{2,3},{5},{6}}=>[4,3,2,1,5,6]=>4 {{1,5,6},{2,3,4}}=>[5,3,4,2,6,1]=>2 {{1,5},{2,3,4,6}}=>[5,3,4,6,1,2]=>1 {{1,5},{2,3,4},{6}}=>[5,3,4,2,1,6]=>3 {{1,6},{2,3,4,5}}=>[6,3,4,5,2,1]=>2 {{1},{2,3,4,5,6}}=>[1,3,4,5,6,2]=>2 {{1},{2,3,4,5},{6}}=>[1,3,4,5,2,6]=>3 {{1,6},{2,3,4},{5}}=>[6,3,4,2,5,1]=>3 {{1},{2,3,4,6},{5}}=>[1,3,4,6,5,2]=>3 {{1},{2,3,4},{5,6}}=>[1,3,4,2,6,5]=>3 {{1},{2,3,4},{5},{6}}=>[1,3,4,2,5,6]=>4 {{1,5,6},{2,3},{4}}=>[5,3,2,4,6,1]=>3 {{1,5},{2,3,6},{4}}=>[5,3,6,4,1,2]=>2 {{1,5},{2,3},{4,6}}=>[5,3,2,6,1,4]=>2 {{1,5},{2,3},{4},{6}}=>[5,3,2,4,1,6]=>4 {{1,6},{2,3,5},{4}}=>[6,3,5,4,2,1]=>3 {{1},{2,3,5,6},{4}}=>[1,3,5,4,6,2]=>3 {{1},{2,3,5},{4,6}}=>[1,3,5,6,2,4]=>2 {{1},{2,3,5},{4},{6}}=>[1,3,5,4,2,6]=>4 {{1,6},{2,3},{4,5}}=>[6,3,2,5,4,1]=>3 {{1},{2,3,6},{4,5}}=>[1,3,6,5,4,2]=>3 {{1},{2,3},{4,5,6}}=>[1,3,2,5,6,4]=>3 {{1},{2,3},{4,5},{6}}=>[1,3,2,5,4,6]=>4 {{1,6},{2,3},{4},{5}}=>[6,3,2,4,5,1]=>4 {{1},{2,3,6},{4},{5}}=>[1,3,6,4,5,2]=>4 {{1},{2,3},{4,6},{5}}=>[1,3,2,6,5,4]=>4 {{1},{2,3},{4},{5,6}}=>[1,3,2,4,6,5]=>4 {{1},{2,3},{4},{5},{6}}=>[1,3,2,4,5,6]=>5 {{1,4,5,6},{2},{3}}=>[4,2,3,5,6,1]=>3 {{1,4,5},{2,6},{3}}=>[4,6,3,5,1,2]=>2 {{1,4,5},{2},{3,6}}=>[4,2,6,5,1,3]=>2 {{1,4,5},{2},{3},{6}}=>[4,2,3,5,1,6]=>4 {{1,4,6},{2,5},{3}}=>[4,5,3,6,2,1]=>2 {{1,4},{2,5,6},{3}}=>[4,5,3,1,6,2]=>2 {{1,4},{2,5},{3,6}}=>[4,5,6,1,2,3]=>1 {{1,4},{2,5},{3},{6}}=>[4,5,3,1,2,6]=>3 {{1,4,6},{2},{3,5}}=>[4,2,5,6,3,1]=>2 {{1,4},{2,6},{3,5}}=>[4,6,5,1,3,2]=>1 {{1,4},{2},{3,5,6}}=>[4,2,5,1,6,3]=>2 {{1,4},{2},{3,5},{6}}=>[4,2,5,1,3,6]=>3 {{1,4,6},{2},{3},{5}}=>[4,2,3,6,5,1]=>4 {{1,4},{2,6},{3},{5}}=>[4,6,3,1,5,2]=>3 {{1,4},{2},{3,6},{5}}=>[4,2,6,1,5,3]=>3 {{1,4},{2},{3},{5,6}}=>[4,2,3,1,6,5]=>4 {{1,4},{2},{3},{5},{6}}=>[4,2,3,1,5,6]=>5 {{1,5,6},{2,4},{3}}=>[5,4,3,2,6,1]=>3 {{1,5},{2,4,6},{3}}=>[5,4,3,6,1,2]=>2 {{1,5},{2,4},{3,6}}=>[5,4,6,2,1,3]=>1 {{1,5},{2,4},{3},{6}}=>[5,4,3,2,1,6]=>4 {{1,6},{2,4,5},{3}}=>[6,4,3,5,2,1]=>3 {{1},{2,4,5,6},{3}}=>[1,4,3,5,6,2]=>3 {{1},{2,4,5},{3,6}}=>[1,4,6,5,2,3]=>2 {{1},{2,4,5},{3},{6}}=>[1,4,3,5,2,6]=>4 {{1,6},{2,4},{3,5}}=>[6,4,5,2,3,1]=>2 {{1},{2,4,6},{3,5}}=>[1,4,5,6,3,2]=>2 {{1},{2,4},{3,5,6}}=>[1,4,5,2,6,3]=>2 {{1},{2,4},{3,5},{6}}=>[1,4,5,2,3,6]=>3 {{1,6},{2,4},{3},{5}}=>[6,4,3,2,5,1]=>4 {{1},{2,4,6},{3},{5}}=>[1,4,3,6,5,2]=>4 {{1},{2,4},{3,6},{5}}=>[1,4,6,2,5,3]=>3 {{1},{2,4},{3},{5,6}}=>[1,4,3,2,6,5]=>4 {{1},{2,4},{3},{5},{6}}=>[1,4,3,2,5,6]=>5 {{1,5,6},{2},{3,4}}=>[5,2,4,3,6,1]=>3 {{1,5},{2,6},{3,4}}=>[5,6,4,3,1,2]=>2 {{1,5},{2},{3,4,6}}=>[5,2,4,6,1,3]=>2 {{1,5},{2},{3,4},{6}}=>[5,2,4,3,1,6]=>4 {{1,6},{2,5},{3,4}}=>[6,5,4,3,2,1]=>3 {{1},{2,5,6},{3,4}}=>[1,5,4,3,6,2]=>3 {{1},{2,5},{3,4,6}}=>[1,5,4,6,2,3]=>2 {{1},{2,5},{3,4},{6}}=>[1,5,4,3,2,6]=>4 {{1,6},{2},{3,4,5}}=>[6,2,4,5,3,1]=>3 {{1},{2,6},{3,4,5}}=>[1,6,4,5,3,2]=>3 {{1},{2},{3,4,5,6}}=>[1,2,4,5,6,3]=>3 {{1},{2},{3,4,5},{6}}=>[1,2,4,5,3,6]=>4 {{1,6},{2},{3,4},{5}}=>[6,2,4,3,5,1]=>4 {{1},{2,6},{3,4},{5}}=>[1,6,4,3,5,2]=>4 {{1},{2},{3,4,6},{5}}=>[1,2,4,6,5,3]=>4 {{1},{2},{3,4},{5,6}}=>[1,2,4,3,6,5]=>4 {{1},{2},{3,4},{5},{6}}=>[1,2,4,3,5,6]=>5 {{1,5,6},{2},{3},{4}}=>[5,2,3,4,6,1]=>4 {{1,5},{2,6},{3},{4}}=>[5,6,3,4,1,2]=>3 {{1,5},{2},{3,6},{4}}=>[5,2,6,4,1,3]=>3 {{1,5},{2},{3},{4,6}}=>[5,2,3,6,1,4]=>3 {{1,5},{2},{3},{4},{6}}=>[5,2,3,4,1,6]=>5 {{1,6},{2,5},{3},{4}}=>[6,5,3,4,2,1]=>4 {{1},{2,5,6},{3},{4}}=>[1,5,3,4,6,2]=>4 {{1},{2,5},{3,6},{4}}=>[1,5,6,4,2,3]=>3 {{1},{2,5},{3},{4,6}}=>[1,5,3,6,2,4]=>3 {{1},{2,5},{3},{4},{6}}=>[1,5,3,4,2,6]=>5 {{1,6},{2},{3,5},{4}}=>[6,2,5,4,3,1]=>4 {{1},{2,6},{3,5},{4}}=>[1,6,5,4,3,2]=>4 {{1},{2},{3,5,6},{4}}=>[1,2,5,4,6,3]=>4 {{1},{2},{3,5},{4,6}}=>[1,2,5,6,3,4]=>3 {{1},{2},{3,5},{4},{6}}=>[1,2,5,4,3,6]=>5 {{1,6},{2},{3},{4,5}}=>[6,2,3,5,4,1]=>4 {{1},{2,6},{3},{4,5}}=>[1,6,3,5,4,2]=>4 {{1},{2},{3,6},{4,5}}=>[1,2,6,5,4,3]=>4 {{1},{2},{3},{4,5,6}}=>[1,2,3,5,6,4]=>4 {{1},{2},{3},{4,5},{6}}=>[1,2,3,5,4,6]=>5 {{1,6},{2},{3},{4},{5}}=>[6,2,3,4,5,1]=>5 {{1},{2,6},{3},{4},{5}}=>[1,6,3,4,5,2]=>5 {{1},{2},{3,6},{4},{5}}=>[1,2,6,4,5,3]=>5 {{1},{2},{3},{4,6},{5}}=>[1,2,3,6,5,4]=>5 {{1},{2},{3},{4},{5,6}}=>[1,2,3,4,6,5]=>5 {{1},{2},{3},{4},{5},{6}}=>[1,2,3,4,5,6]=>6 {{1},{2,3,4,5,6,7}}=>[1,3,4,5,6,7,2]=>2 {{1},{2,3,4,5,6},{7}}=>[1,3,4,5,6,2,7]=>3 {{1},{2,3,4,5,7},{6}}=>[1,3,4,5,7,6,2]=>3 {{1},{2,3,4,5},{6,7}}=>[1,3,4,5,2,7,6]=>3 {{1},{2,3,4,5},{6},{7}}=>[1,3,4,5,2,6,7]=>4 {{1},{2,3,4,6,7},{5}}=>[1,3,4,6,5,7,2]=>3 {{1},{2,3,4,6},{5,7}}=>[1,3,4,6,7,2,5]=>2 {{1},{2,3,4,6},{5},{7}}=>[1,3,4,6,5,2,7]=>4 {{1},{2,3,4,7},{5,6}}=>[1,3,4,7,6,5,2]=>3 {{1},{2,3,4},{5,6,7}}=>[1,3,4,2,6,7,5]=>3 {{1},{2,3,4},{5,6},{7}}=>[1,3,4,2,6,5,7]=>4 {{1},{2,3,4,7},{5},{6}}=>[1,3,4,7,5,6,2]=>4 {{1},{2,3,4},{5,7},{6}}=>[1,3,4,2,7,6,5]=>4 {{1},{2,3,4},{5},{6,7}}=>[1,3,4,2,5,7,6]=>4 {{1},{2,3,4},{5},{6},{7}}=>[1,3,4,2,5,6,7]=>5 {{1},{2,3,5,6,7},{4}}=>[1,3,5,4,6,7,2]=>3 {{1},{2,3,5,6},{4,7}}=>[1,3,5,7,6,2,4]=>2 {{1},{2,3,5,6},{4},{7}}=>[1,3,5,4,6,2,7]=>4 {{1},{2,3,5,7},{4,6}}=>[1,3,5,6,7,4,2]=>2 {{1},{2,3,5},{4,6,7}}=>[1,3,5,6,2,7,4]=>2 {{1},{2,3,5},{4,6},{7}}=>[1,3,5,6,2,4,7]=>3 {{1},{2,3,5,7},{4},{6}}=>[1,3,5,4,7,6,2]=>4 {{1},{2,3,5},{4,7},{6}}=>[1,3,5,7,2,6,4]=>3 {{1},{2,3,5},{4},{6,7}}=>[1,3,5,4,2,7,6]=>4 {{1},{2,3,5},{4},{6},{7}}=>[1,3,5,4,2,6,7]=>5 {{1},{2,3,6,7},{4,5}}=>[1,3,6,5,4,7,2]=>3 {{1},{2,3,6},{4,5,7}}=>[1,3,6,5,7,2,4]=>2 {{1},{2,3,6},{4,5},{7}}=>[1,3,6,5,4,2,7]=>4 {{1},{2,3,7},{4,5,6}}=>[1,3,7,5,6,4,2]=>3 {{1},{2,3},{4,5,6,7}}=>[1,3,2,5,6,7,4]=>3 {{1},{2,3},{4,5,6},{7}}=>[1,3,2,5,6,4,7]=>4 {{1},{2,3,7},{4,5},{6}}=>[1,3,7,5,4,6,2]=>4 {{1},{2,3},{4,5,7},{6}}=>[1,3,2,5,7,6,4]=>4 {{1},{2,3},{4,5},{6,7}}=>[1,3,2,5,4,7,6]=>4 {{1},{2,3},{4,5},{6},{7}}=>[1,3,2,5,4,6,7]=>5 {{1},{2,3,6,7},{4},{5}}=>[1,3,6,4,5,7,2]=>4 {{1},{2,3,6},{4,7},{5}}=>[1,3,6,7,5,2,4]=>3 {{1},{2,3,6},{4},{5,7}}=>[1,3,6,4,7,2,5]=>3 {{1},{2,3,6},{4},{5},{7}}=>[1,3,6,4,5,2,7]=>5 {{1},{2,3,7},{4,6},{5}}=>[1,3,7,6,5,4,2]=>4 {{1},{2,3},{4,6,7},{5}}=>[1,3,2,6,5,7,4]=>4 {{1},{2,3},{4,6},{5,7}}=>[1,3,2,6,7,4,5]=>3 {{1},{2,3},{4,6},{5},{7}}=>[1,3,2,6,5,4,7]=>5 {{1},{2,3,7},{4},{5,6}}=>[1,3,7,4,6,5,2]=>4 {{1},{2,3},{4,7},{5,6}}=>[1,3,2,7,6,5,4]=>4 {{1},{2,3},{4},{5,6,7}}=>[1,3,2,4,6,7,5]=>4 {{1},{2,3},{4},{5,6},{7}}=>[1,3,2,4,6,5,7]=>5 {{1},{2,3,7},{4},{5},{6}}=>[1,3,7,4,5,6,2]=>5 {{1},{2,3},{4,7},{5},{6}}=>[1,3,2,7,5,6,4]=>5 {{1},{2,3},{4},{5,7},{6}}=>[1,3,2,4,7,6,5]=>5 {{1},{2,3},{4},{5},{6,7}}=>[1,3,2,4,5,7,6]=>5 {{1},{2,3},{4},{5},{6},{7}}=>[1,3,2,4,5,6,7]=>6 {{1},{2,4,5,6,7},{3}}=>[1,4,3,5,6,7,2]=>3 {{1},{2,4,5,6},{3},{7}}=>[1,4,3,5,6,2,7]=>4 {{1},{2,4,5},{3,6,7}}=>[1,4,6,5,2,7,3]=>2 {{1},{2,4,5},{3,6},{7}}=>[1,4,6,5,2,3,7]=>3 {{1},{2,4,5,7},{3},{6}}=>[1,4,3,5,7,6,2]=>4 {{1},{2,4,5},{3},{6,7}}=>[1,4,3,5,2,7,6]=>4 {{1},{2,4,5},{3},{6},{7}}=>[1,4,3,5,2,6,7]=>5 {{1},{2,4,6,7},{3,5}}=>[1,4,5,6,3,7,2]=>2 {{1},{2,4,6},{3,5,7}}=>[1,4,5,6,7,2,3]=>2 {{1},{2,4,6},{3,5},{7}}=>[1,4,5,6,3,2,7]=>3 {{1},{2,4,7},{3,5,6}}=>[1,4,5,7,6,3,2]=>2 {{1},{2,4},{3,5,6,7}}=>[1,4,5,2,6,7,3]=>2 {{1},{2,4},{3,5,6},{7}}=>[1,4,5,2,6,3,7]=>3 {{1},{2,4,7},{3,5},{6}}=>[1,4,5,7,3,6,2]=>3 {{1},{2,4},{3,5,7},{6}}=>[1,4,5,2,7,6,3]=>3 {{1},{2,4},{3,5},{6,7}}=>[1,4,5,2,3,7,6]=>3 {{1},{2,4},{3,5},{6},{7}}=>[1,4,5,2,3,6,7]=>4 {{1},{2,4,6,7},{3},{5}}=>[1,4,3,6,5,7,2]=>4 {{1},{2,4,6},{3},{5,7}}=>[1,4,3,6,7,2,5]=>3 {{1},{2,4,6},{3},{5},{7}}=>[1,4,3,6,5,2,7]=>5 {{1},{2,4},{3,6,7},{5}}=>[1,4,6,2,5,7,3]=>3 {{1},{2,4},{3,6},{5,7}}=>[1,4,6,2,7,3,5]=>2 {{1},{2,4},{3,6},{5},{7}}=>[1,4,6,2,5,3,7]=>4 {{1},{2,4,7},{3},{5,6}}=>[1,4,3,7,6,5,2]=>4 {{1},{2,4},{3},{5,6,7}}=>[1,4,3,2,6,7,5]=>4 {{1},{2,4},{3},{5,6},{7}}=>[1,4,3,2,6,5,7]=>5 {{1},{2,4,7},{3},{5},{6}}=>[1,4,3,7,5,6,2]=>5 {{1},{2,4},{3},{5,7},{6}}=>[1,4,3,2,7,6,5]=>5 {{1},{2,4},{3},{5},{6,7}}=>[1,4,3,2,5,7,6]=>5 {{1},{2,4},{3},{5},{6},{7}}=>[1,4,3,2,5,6,7]=>6 {{1},{2},{3,4,5,6,7}}=>[1,2,4,5,6,7,3]=>3 {{1},{2},{3,4,5,6},{7}}=>[1,2,4,5,6,3,7]=>4 {{1},{2},{3,4,5,7},{6}}=>[1,2,4,5,7,6,3]=>4 {{1},{2},{3,4,5},{6,7}}=>[1,2,4,5,3,7,6]=>4 {{1},{2},{3,4,5},{6},{7}}=>[1,2,4,5,3,6,7]=>5 {{1},{2},{3,4,6,7},{5}}=>[1,2,4,6,5,7,3]=>4 {{1},{2},{3,4,6},{5,7}}=>[1,2,4,6,7,3,5]=>3 {{1},{2},{3,4,6},{5},{7}}=>[1,2,4,6,5,3,7]=>5 {{1},{2},{3,4,7},{5,6}}=>[1,2,4,7,6,5,3]=>4 {{1},{2},{3,4},{5,6,7}}=>[1,2,4,3,6,7,5]=>4 {{1},{2},{3,4},{5,6},{7}}=>[1,2,4,3,6,5,7]=>5 {{1},{2},{3,4,7},{5},{6}}=>[1,2,4,7,5,6,3]=>5 {{1},{2},{3,4},{5,7},{6}}=>[1,2,4,3,7,6,5]=>5 {{1},{2},{3,4},{5},{6,7}}=>[1,2,4,3,5,7,6]=>5 {{1},{2},{3,4},{5},{6},{7}}=>[1,2,4,3,5,6,7]=>6 {{1},{2},{3,5,6,7},{4}}=>[1,2,5,4,6,7,3]=>4 {{1},{2},{3,5,6},{4,7}}=>[1,2,5,7,6,3,4]=>3 {{1},{2},{3,5,6},{4},{7}}=>[1,2,5,4,6,3,7]=>5 {{1},{2},{3,5,7},{4,6}}=>[1,2,5,6,7,4,3]=>3 {{1},{2},{3,5},{4,6,7}}=>[1,2,5,6,3,7,4]=>3 {{1},{2},{3,5},{4,6},{7}}=>[1,2,5,6,3,4,7]=>4 {{1},{2},{3,5,7},{4},{6}}=>[1,2,5,4,7,6,3]=>5 {{1},{2},{3,5},{4,7},{6}}=>[1,2,5,7,3,6,4]=>4 {{1},{2},{3,5},{4},{6,7}}=>[1,2,5,4,3,7,6]=>5 {{1},{2},{3,5},{4},{6},{7}}=>[1,2,5,4,3,6,7]=>6 {{1},{2},{3,6,7},{4,5}}=>[1,2,6,5,4,7,3]=>4 {{1},{2},{3,6},{4,5,7}}=>[1,2,6,5,7,3,4]=>3 {{1},{2},{3,6},{4,5},{7}}=>[1,2,6,5,4,3,7]=>5 {{1},{2},{3,7},{4,5,6}}=>[1,2,7,5,6,4,3]=>4 {{1},{2},{3},{4,5,6,7}}=>[1,2,3,5,6,7,4]=>4 {{1},{2},{3},{4,5,6},{7}}=>[1,2,3,5,6,4,7]=>5 {{1},{2},{3,7},{4,5},{6}}=>[1,2,7,5,4,6,3]=>5 {{1},{2},{3},{4,5,7},{6}}=>[1,2,3,5,7,6,4]=>5 {{1},{2},{3},{4,5},{6,7}}=>[1,2,3,5,4,7,6]=>5 {{1},{2},{3},{4,5},{6},{7}}=>[1,2,3,5,4,6,7]=>6 {{1},{2},{3,6,7},{4},{5}}=>[1,2,6,4,5,7,3]=>5 {{1},{2},{3,6},{4,7},{5}}=>[1,2,6,7,5,3,4]=>4 {{1},{2},{3,6},{4},{5,7}}=>[1,2,6,4,7,3,5]=>4 {{1},{2},{3,6},{4},{5},{7}}=>[1,2,6,4,5,3,7]=>6 {{1},{2},{3,7},{4,6},{5}}=>[1,2,7,6,5,4,3]=>5 {{1},{2},{3},{4,6,7},{5}}=>[1,2,3,6,5,7,4]=>5 {{1},{2},{3},{4,6},{5,7}}=>[1,2,3,6,7,4,5]=>4 {{1},{2},{3},{4,6},{5},{7}}=>[1,2,3,6,5,4,7]=>6 {{1},{2},{3,7},{4},{5,6}}=>[1,2,7,4,6,5,3]=>5 {{1},{2},{3},{4,7},{5,6}}=>[1,2,3,7,6,5,4]=>5 {{1},{2},{3},{4},{5,6,7}}=>[1,2,3,4,6,7,5]=>5 {{1},{2},{3},{4},{5,6},{7}}=>[1,2,3,4,6,5,7]=>6 {{1},{2},{3,7},{4},{5},{6}}=>[1,2,7,4,5,6,3]=>6 {{1},{2},{3},{4,7},{5},{6}}=>[1,2,3,7,5,6,4]=>6 {{1},{2},{3},{4},{5,7},{6}}=>[1,2,3,4,7,6,5]=>6 {{1},{2},{3},{4},{5},{6,7}}=>[1,2,3,4,5,7,6]=>6 {{1},{2},{3},{4},{5},{6},{7}}=>[1,2,3,4,5,6,7]=>7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of topologically connected components of the chord diagram of a permutation.
The chord diagram of a permutation $\pi\in\mathfrak S_n$ is obtained by placing labels $1,\dots,n$ in cyclic order on a cycle and drawing a (straight) arc from $i$ to $\pi(i)$ for every label $i$.
This statistic records the number of topologically connected components in the chord diagram. In particular, if two arcs cross, all four labels connected by the two arcs are in the same component.
The permutation $\pi\in\mathfrak S_n$ stabilizes an interval $I=\{a,a+1,\dots,b\}$ if $\pi(I)=I$. It is stabilized-interval-free, if the only interval $\pi$ stablizes is $\{1,\dots,n\}$. Thus, this statistic is $1$ if $\pi$ is stabilized-interval-free.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.