Identifier
- St001427: Signed permutations ⟶ ℤ
Values
=>
[1]=>0
[-1]=>1
[1,2]=>0
[1,-2]=>1
[-1,2]=>1
[-1,-2]=>2
[2,1]=>1
[2,-1]=>1
[-2,1]=>1
[-2,-1]=>1
[1,2,3]=>0
[1,2,-3]=>1
[1,-2,3]=>1
[1,-2,-3]=>2
[-1,2,3]=>1
[-1,2,-3]=>2
[-1,-2,3]=>2
[-1,-2,-3]=>3
[1,3,2]=>1
[1,3,-2]=>1
[1,-3,2]=>1
[1,-3,-2]=>1
[-1,3,2]=>2
[-1,3,-2]=>2
[-1,-3,2]=>2
[-1,-3,-2]=>2
[2,1,3]=>1
[2,1,-3]=>2
[2,-1,3]=>1
[2,-1,-3]=>2
[-2,1,3]=>1
[-2,1,-3]=>2
[-2,-1,3]=>1
[-2,-1,-3]=>2
[2,3,1]=>1
[2,3,-1]=>1
[2,-3,1]=>1
[2,-3,-1]=>1
[-2,3,1]=>2
[-2,3,-1]=>2
[-2,-3,1]=>2
[-2,-3,-1]=>2
[3,1,2]=>1
[3,1,-2]=>2
[3,-1,2]=>1
[3,-1,-2]=>2
[-3,1,2]=>1
[-3,1,-2]=>2
[-3,-1,2]=>1
[-3,-1,-2]=>2
[3,2,1]=>2
[3,2,-1]=>2
[3,-2,1]=>1
[3,-2,-1]=>1
[-3,2,1]=>2
[-3,2,-1]=>2
[-3,-2,1]=>1
[-3,-2,-1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of descents of a signed permutation.
A descent of a signed permutation $\sigma$ of length $n$ is the number of indices $0 \leq i < n$ such that $\sigma(i) > \sigma(i+1)$ where one considers $\sigma(0) = 0$.
A descent of a signed permutation $\sigma$ of length $n$ is the number of indices $0 \leq i < n$ such that $\sigma(i) > \sigma(i+1)$ where one considers $\sigma(0) = 0$.
Code
def statistic(pi): pi = [0] + list(pi) return sum(1 for i in range(len(pi)-1) if pi[i] > pi[i+1])
Created
Jun 21, 2019 at 13:52 by Christian Stump
Updated
Jun 21, 2019 at 13:52 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!