Identifier
-
Mp00152:
Graphs
—Laplacian multiplicities⟶
Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001232: Dyck paths ⟶ ℤ
Values
([],1) => [1] => [1] => [1,0,1,0] => 1
([],2) => [2] => [2] => [1,1,0,0,1,0] => 1
([(0,1)],2) => [1,1] => [1,1] => [1,0,1,1,0,0] => 2
([],3) => [3] => [3] => [1,1,1,0,0,0,1,0] => 1
([(0,2),(1,2)],3) => [1,1,1] => [1,1,1] => [1,0,1,1,1,0,0,0] => 3
([],4) => [4] => [4] => [1,1,1,1,0,0,0,0,1,0] => 1
([(0,3),(1,2)],4) => [2,2] => [2,2] => [1,1,0,0,1,1,0,0] => 2
([(0,3),(1,2),(2,3)],4) => [1,1,1,1] => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 4
([(1,2),(1,3),(2,3)],4) => [2,2] => [2,2] => [1,1,0,0,1,1,0,0] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [1,1,1,1] => [1,0,1,1,1,1,0,0,0,0] => 4
([],5) => [5] => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(2,4),(3,4)],5) => [1,1,3] => [3,1,1] => [1,0,1,1,0,0,1,0] => 3
([(0,4),(1,4),(2,4),(3,4)],5) => [1,3,1] => [3,1,1] => [1,0,1,1,0,0,1,0] => 3
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0] => 5
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,1,1] => [1,0,1,1,0,0,1,0] => 3
([],6) => [6] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
([(3,5),(4,5)],6) => [1,1,4] => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 5
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,4,1] => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 5
([(2,5),(3,4),(4,5)],6) => [1,1,1,3] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(1,2),(3,5),(4,5)],6) => [1,1,1,3] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,3] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,3,1] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,2] => [2,2,2] => [1,1,0,0,1,1,1,0,0,0] => 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,2] => [2,2,2] => [1,1,0,0,1,1,1,0,0,0] => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,3,1] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(0,5),(1,4),(2,3)],6) => [3,3] => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [2,2,2] => [2,2,2] => [1,1,0,0,1,1,1,0,0,0] => 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,2] => [2,2,2] => [1,1,0,0,1,1,1,0,0,0] => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,3] => [3,3] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [2,2,2] => [2,2,2] => [1,1,0,0,1,1,1,0,0,0] => 3
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,3,1,1] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [1,4,1] => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 5
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,3,1] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [1,3,1,1] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [1,3,1,1] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => 6
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,3,1,1] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 5
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 5
([(4,6),(5,6)],7) => [1,1,5] => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 7
>>> Load all 274 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Map
to partition
Description
Sends a composition to the partition obtained by sorting the entries.
Map
Laplacian multiplicities
Description
The composition of multiplicities of the Laplacian eigenvalues.
Let λ1>λ2>… be the eigenvalues of the Laplacian matrix of a graph on n vertices. Then this map returns the composition a1,…,ak of n where ai is the multiplicity of λi.
Let λ1>λ2>… be the eigenvalues of the Laplacian matrix of a graph on n vertices. Then this map returns the composition a1,…,ak of n where ai is the multiplicity of λi.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!