Identifier
Identifier
Values
=>
[1]=>1 [1,2]=>1 [2,1]=>1 [1,2,3]=>1 [1,3,2]=>1 [2,1,3]=>1 [2,3,1]=>1 [3,1,2]=>1 [3,2,1]=>1 [1,2,3,4]=>1 [1,2,4,3]=>1 [1,3,2,4]=>1 [1,3,4,2]=>1 [1,4,2,3]=>1 [1,4,3,2]=>1 [2,1,3,4]=>1 [2,1,4,3]=>2 [2,3,1,4]=>1 [2,3,4,1]=>1 [2,4,1,3]=>1 [2,4,3,1]=>1 [3,1,2,4]=>1 [3,1,4,2]=>1 [3,2,1,4]=>1 [3,2,4,1]=>1 [3,4,1,2]=>1 [3,4,2,1]=>1 [4,1,2,3]=>1 [4,1,3,2]=>1 [4,2,1,3]=>1 [4,2,3,1]=>1 [4,3,1,2]=>1 [4,3,2,1]=>1 [1,2,3,4,5]=>1 [1,2,3,5,4]=>1 [1,2,4,3,5]=>1 [1,2,4,5,3]=>1 [1,2,5,3,4]=>1 [1,2,5,4,3]=>1 [1,3,2,4,5]=>1 [1,3,2,5,4]=>2 [1,3,4,2,5]=>1 [1,3,4,5,2]=>1 [1,3,5,2,4]=>1 [1,3,5,4,2]=>1 [1,4,2,3,5]=>1 [1,4,2,5,3]=>1 [1,4,3,2,5]=>1 [1,4,3,5,2]=>1 [1,4,5,2,3]=>1 [1,4,5,3,2]=>1 [1,5,2,3,4]=>1 [1,5,2,4,3]=>1 [1,5,3,2,4]=>1 [1,5,3,4,2]=>1 [1,5,4,2,3]=>1 [1,5,4,3,2]=>1 [2,1,3,4,5]=>1 [2,1,3,5,4]=>2 [2,1,4,3,5]=>2 [2,1,4,5,3]=>2 [2,1,5,3,4]=>2 [2,1,5,4,3]=>2 [2,3,1,4,5]=>1 [2,3,1,5,4]=>2 [2,3,4,1,5]=>1 [2,3,4,5,1]=>1 [2,3,5,1,4]=>1 [2,3,5,4,1]=>1 [2,4,1,3,5]=>1 [2,4,1,5,3]=>1 [2,4,3,1,5]=>1 [2,4,3,5,1]=>1 [2,4,5,1,3]=>1 [2,4,5,3,1]=>1 [2,5,1,3,4]=>1 [2,5,1,4,3]=>1 [2,5,3,1,4]=>1 [2,5,3,4,1]=>1 [2,5,4,1,3]=>1 [2,5,4,3,1]=>1 [3,1,2,4,5]=>1 [3,1,2,5,4]=>2 [3,1,4,2,5]=>1 [3,1,4,5,2]=>1 [3,1,5,2,4]=>1 [3,1,5,4,2]=>1 [3,2,1,4,5]=>1 [3,2,1,5,4]=>2 [3,2,4,1,5]=>1 [3,2,4,5,1]=>1 [3,2,5,1,4]=>1 [3,2,5,4,1]=>1 [3,4,1,2,5]=>1 [3,4,1,5,2]=>1 [3,4,2,1,5]=>1 [3,4,2,5,1]=>1 [3,4,5,1,2]=>1 [3,4,5,2,1]=>1 [3,5,1,2,4]=>1 [3,5,1,4,2]=>1 [3,5,2,1,4]=>1 [3,5,2,4,1]=>1 [3,5,4,1,2]=>1 [3,5,4,2,1]=>1 [4,1,2,3,5]=>1 [4,1,2,5,3]=>1 [4,1,3,2,5]=>1 [4,1,3,5,2]=>1 [4,1,5,2,3]=>1 [4,1,5,3,2]=>1 [4,2,1,3,5]=>1 [4,2,1,5,3]=>1 [4,2,3,1,5]=>1 [4,2,3,5,1]=>1 [4,2,5,1,3]=>1 [4,2,5,3,1]=>1 [4,3,1,2,5]=>1 [4,3,1,5,2]=>1 [4,3,2,1,5]=>1 [4,3,2,5,1]=>1 [4,3,5,1,2]=>1 [4,3,5,2,1]=>1 [4,5,1,2,3]=>1 [4,5,1,3,2]=>1 [4,5,2,1,3]=>1 [4,5,2,3,1]=>1 [4,5,3,1,2]=>1 [4,5,3,2,1]=>1 [5,1,2,3,4]=>1 [5,1,2,4,3]=>1 [5,1,3,2,4]=>1 [5,1,3,4,2]=>1 [5,1,4,2,3]=>1 [5,1,4,3,2]=>1 [5,2,1,3,4]=>1 [5,2,1,4,3]=>1 [5,2,3,1,4]=>1 [5,2,3,4,1]=>1 [5,2,4,1,3]=>1 [5,2,4,3,1]=>1 [5,3,1,2,4]=>1 [5,3,1,4,2]=>1 [5,3,2,1,4]=>1 [5,3,2,4,1]=>1 [5,3,4,1,2]=>1 [5,3,4,2,1]=>1 [5,4,1,2,3]=>1 [5,4,1,3,2]=>1 [5,4,2,1,3]=>1 [5,4,2,3,1]=>1 [5,4,3,1,2]=>1 [5,4,3,2,1]=>1
click to show generating function       
Description
The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$.
References
[1] Iyama, O., Zhang, X. Classifying τ-tilting modules over the Auslander algebra of $K[x]/(x^n)$ arXiv:1602.05037
Created
May 24, 2018 at 20:09 by Rene Marczinzik
Updated
May 24, 2018 at 20:09 by Rene Marczinzik