Values
[1] => [1] => 1
[2] => [1,1] => 2
[1,1] => [2] => 4
[3] => [1,1,1] => 3
[2,1] => [2,1] => 5
[1,1,1] => [3] => 9
[4] => [1,1,1,1] => 4
[3,1] => [2,1,1] => 6
[2,2] => [2,2] => 8
[2,1,1] => [3,1] => 10
[1,1,1,1] => [4] => 16
[5] => [1,1,1,1,1] => 5
[4,1] => [2,1,1,1] => 7
[3,2] => [2,2,1] => 9
[3,1,1] => [3,1,1] => 11
[2,2,1] => [3,2] => 13
[2,1,1,1] => [4,1] => 17
[1,1,1,1,1] => [5] => 25
[6] => [1,1,1,1,1,1] => 6
[5,1] => [2,1,1,1,1] => 8
[4,2] => [2,2,1,1] => 10
[4,1,1] => [3,1,1,1] => 12
[3,3] => [2,2,2] => 12
[3,2,1] => [3,2,1] => 14
[3,1,1,1] => [4,1,1] => 18
[2,2,2] => [3,3] => 18
[2,2,1,1] => [4,2] => 20
[2,1,1,1,1] => [5,1] => 26
[1,1,1,1,1,1] => [6] => 36
[7] => [1,1,1,1,1,1,1] => 7
[6,1] => [2,1,1,1,1,1] => 9
[5,2] => [2,2,1,1,1] => 11
[5,1,1] => [3,1,1,1,1] => 13
[4,3] => [2,2,2,1] => 13
[4,2,1] => [3,2,1,1] => 15
[4,1,1,1] => [4,1,1,1] => 19
[3,3,1] => [3,2,2] => 17
[3,2,2] => [3,3,1] => 19
[3,2,1,1] => [4,2,1] => 21
[3,1,1,1,1] => [5,1,1] => 27
[2,2,2,1] => [4,3] => 25
[2,2,1,1,1] => [5,2] => 29
[2,1,1,1,1,1] => [6,1] => 37
[1,1,1,1,1,1,1] => [7] => 49
[8] => [1,1,1,1,1,1,1,1] => 8
[7,1] => [2,1,1,1,1,1,1] => 10
[6,2] => [2,2,1,1,1,1] => 12
[6,1,1] => [3,1,1,1,1,1] => 14
[5,3] => [2,2,2,1,1] => 14
[5,2,1] => [3,2,1,1,1] => 16
[5,1,1,1] => [4,1,1,1,1] => 20
[4,4] => [2,2,2,2] => 16
[4,3,1] => [3,2,2,1] => 18
[4,2,2] => [3,3,1,1] => 20
[4,2,1,1] => [4,2,1,1] => 22
[4,1,1,1,1] => [5,1,1,1] => 28
[3,3,2] => [3,3,2] => 22
[3,3,1,1] => [4,2,2] => 24
[3,2,2,1] => [4,3,1] => 26
[3,2,1,1,1] => [5,2,1] => 30
[3,1,1,1,1,1] => [6,1,1] => 38
[2,2,2,2] => [4,4] => 32
[2,2,2,1,1] => [5,3] => 34
[2,2,1,1,1,1] => [6,2] => 40
[2,1,1,1,1,1,1] => [7,1] => 50
[1,1,1,1,1,1,1,1] => [8] => 64
[9] => [1,1,1,1,1,1,1,1,1] => 9
[8,1] => [2,1,1,1,1,1,1,1] => 11
[7,2] => [2,2,1,1,1,1,1] => 13
[7,1,1] => [3,1,1,1,1,1,1] => 15
[6,3] => [2,2,2,1,1,1] => 15
[6,2,1] => [3,2,1,1,1,1] => 17
[6,1,1,1] => [4,1,1,1,1,1] => 21
[5,4] => [2,2,2,2,1] => 17
[5,3,1] => [3,2,2,1,1] => 19
[5,2,2] => [3,3,1,1,1] => 21
[5,2,1,1] => [4,2,1,1,1] => 23
[5,1,1,1,1] => [5,1,1,1,1] => 29
[4,4,1] => [3,2,2,2] => 21
[4,3,2] => [3,3,2,1] => 23
[4,3,1,1] => [4,2,2,1] => 25
[4,2,2,1] => [4,3,1,1] => 27
[4,2,1,1,1] => [5,2,1,1] => 31
[4,1,1,1,1,1] => [6,1,1,1] => 39
[3,3,3] => [3,3,3] => 27
[3,3,2,1] => [4,3,2] => 29
[3,3,1,1,1] => [5,2,2] => 33
[3,2,2,2] => [4,4,1] => 33
[3,2,2,1,1] => [5,3,1] => 35
[3,2,1,1,1,1] => [6,2,1] => 41
[3,1,1,1,1,1,1] => [7,1,1] => 51
[2,2,2,2,1] => [5,4] => 41
[2,2,2,1,1,1] => [6,3] => 45
[2,2,1,1,1,1,1] => [7,2] => 53
[2,1,1,1,1,1,1,1] => [8,1] => 65
[1,1,1,1,1,1,1,1,1] => [9] => 81
[10] => [1,1,1,1,1,1,1,1,1,1] => 10
[9,1] => [2,1,1,1,1,1,1,1,1] => 12
[8,2] => [2,2,1,1,1,1,1,1] => 14
[8,1,1] => [3,1,1,1,1,1,1,1] => 16
[7,3] => [2,2,2,1,1,1,1] => 16
>>> Load all 288 entries. <<<
[7,2,1] => [3,2,1,1,1,1,1] => 18
[7,1,1,1] => [4,1,1,1,1,1,1] => 22
[6,4] => [2,2,2,2,1,1] => 18
[6,3,1] => [3,2,2,1,1,1] => 20
[6,2,2] => [3,3,1,1,1,1] => 22
[6,2,1,1] => [4,2,1,1,1,1] => 24
[6,1,1,1,1] => [5,1,1,1,1,1] => 30
[5,5] => [2,2,2,2,2] => 20
[5,4,1] => [3,2,2,2,1] => 22
[5,3,2] => [3,3,2,1,1] => 24
[5,3,1,1] => [4,2,2,1,1] => 26
[5,2,2,1] => [4,3,1,1,1] => 28
[5,2,1,1,1] => [5,2,1,1,1] => 32
[5,1,1,1,1,1] => [6,1,1,1,1] => 40
[4,4,2] => [3,3,2,2] => 26
[4,4,1,1] => [4,2,2,2] => 28
[4,3,3] => [3,3,3,1] => 28
[4,3,2,1] => [4,3,2,1] => 30
[4,3,1,1,1] => [5,2,2,1] => 34
[4,2,2,2] => [4,4,1,1] => 34
[4,2,2,1,1] => [5,3,1,1] => 36
[4,2,1,1,1,1] => [6,2,1,1] => 42
[4,1,1,1,1,1,1] => [7,1,1,1] => 52
[3,3,3,1] => [4,3,3] => 34
[3,3,2,2] => [4,4,2] => 36
[3,3,2,1,1] => [5,3,2] => 38
[3,3,1,1,1,1] => [6,2,2] => 44
[3,2,2,2,1] => [5,4,1] => 42
[3,2,2,1,1,1] => [6,3,1] => 46
[3,2,1,1,1,1,1] => [7,2,1] => 54
[3,1,1,1,1,1,1,1] => [8,1,1] => 66
[2,2,2,2,2] => [5,5] => 50
[2,2,2,2,1,1] => [6,4] => 52
[2,2,2,1,1,1,1] => [7,3] => 58
[2,2,1,1,1,1,1,1] => [8,2] => 68
[2,1,1,1,1,1,1,1,1] => [9,1] => 82
[1,1,1,1,1,1,1,1,1,1] => [10] => 100
[11] => [1,1,1,1,1,1,1,1,1,1,1] => 11
[10,1] => [2,1,1,1,1,1,1,1,1,1] => 13
[9,2] => [2,2,1,1,1,1,1,1,1] => 15
[9,1,1] => [3,1,1,1,1,1,1,1,1] => 17
[8,3] => [2,2,2,1,1,1,1,1] => 17
[8,2,1] => [3,2,1,1,1,1,1,1] => 19
[8,1,1,1] => [4,1,1,1,1,1,1,1] => 23
[7,4] => [2,2,2,2,1,1,1] => 19
[7,3,1] => [3,2,2,1,1,1,1] => 21
[7,2,2] => [3,3,1,1,1,1,1] => 23
[7,2,1,1] => [4,2,1,1,1,1,1] => 25
[7,1,1,1,1] => [5,1,1,1,1,1,1] => 31
[6,5] => [2,2,2,2,2,1] => 21
[6,4,1] => [3,2,2,2,1,1] => 23
[6,3,2] => [3,3,2,1,1,1] => 25
[6,3,1,1] => [4,2,2,1,1,1] => 27
[6,2,2,1] => [4,3,1,1,1,1] => 29
[6,2,1,1,1] => [5,2,1,1,1,1] => 33
[6,1,1,1,1,1] => [6,1,1,1,1,1] => 41
[5,5,1] => [3,2,2,2,2] => 25
[5,4,2] => [3,3,2,2,1] => 27
[5,4,1,1] => [4,2,2,2,1] => 29
[5,3,3] => [3,3,3,1,1] => 29
[5,3,2,1] => [4,3,2,1,1] => 31
[5,3,1,1,1] => [5,2,2,1,1] => 35
[5,2,2,2] => [4,4,1,1,1] => 35
[5,2,2,1,1] => [5,3,1,1,1] => 37
[5,2,1,1,1,1] => [6,2,1,1,1] => 43
[5,1,1,1,1,1,1] => [7,1,1,1,1] => 53
[4,4,3] => [3,3,3,2] => 31
[4,4,2,1] => [4,3,2,2] => 33
[4,4,1,1,1] => [5,2,2,2] => 37
[4,3,3,1] => [4,3,3,1] => 35
[4,3,2,2] => [4,4,2,1] => 37
[4,3,2,1,1] => [5,3,2,1] => 39
[4,3,1,1,1,1] => [6,2,2,1] => 45
[4,2,2,2,1] => [5,4,1,1] => 43
[4,2,2,1,1,1] => [6,3,1,1] => 47
[4,2,1,1,1,1,1] => [7,2,1,1] => 55
[4,1,1,1,1,1,1,1] => [8,1,1,1] => 67
[3,3,3,2] => [4,4,3] => 41
[3,3,3,1,1] => [5,3,3] => 43
[3,3,2,2,1] => [5,4,2] => 45
[3,3,2,1,1,1] => [6,3,2] => 49
[3,3,1,1,1,1,1] => [7,2,2] => 57
[3,2,2,2,2] => [5,5,1] => 51
[3,2,2,2,1,1] => [6,4,1] => 53
[3,2,2,1,1,1,1] => [7,3,1] => 59
[3,2,1,1,1,1,1,1] => [8,2,1] => 69
[3,1,1,1,1,1,1,1,1] => [9,1,1] => 83
[2,2,2,2,2,1] => [6,5] => 61
[2,2,2,2,1,1,1] => [7,4] => 65
[2,2,2,1,1,1,1,1] => [8,3] => 73
[2,2,1,1,1,1,1,1,1] => [9,2] => 85
[2,1,1,1,1,1,1,1,1,1] => [10,1] => 101
[1,1,1,1,1,1,1,1,1,1,1] => [11] => 121
[12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 12
[11,1] => [2,1,1,1,1,1,1,1,1,1,1] => 14
[10,2] => [2,2,1,1,1,1,1,1,1,1] => 16
[10,1,1] => [3,1,1,1,1,1,1,1,1,1] => 18
[9,3] => [2,2,2,1,1,1,1,1,1] => 18
[9,2,1] => [3,2,1,1,1,1,1,1,1] => 20
[9,1,1,1] => [4,1,1,1,1,1,1,1,1] => 24
[8,4] => [2,2,2,2,1,1,1,1] => 20
[8,3,1] => [3,2,2,1,1,1,1,1] => 22
[8,2,2] => [3,3,1,1,1,1,1,1] => 24
[8,2,1,1] => [4,2,1,1,1,1,1,1] => 26
[8,1,1,1,1] => [5,1,1,1,1,1,1,1] => 32
[7,5] => [2,2,2,2,2,1,1] => 22
[7,4,1] => [3,2,2,2,1,1,1] => 24
[7,3,2] => [3,3,2,1,1,1,1] => 26
[7,3,1,1] => [4,2,2,1,1,1,1] => 28
[7,2,2,1] => [4,3,1,1,1,1,1] => 30
[7,2,1,1,1] => [5,2,1,1,1,1,1] => 34
[7,1,1,1,1,1] => [6,1,1,1,1,1,1] => 42
[6,6] => [2,2,2,2,2,2] => 24
[6,5,1] => [3,2,2,2,2,1] => 26
[6,4,2] => [3,3,2,2,1,1] => 28
[6,4,1,1] => [4,2,2,2,1,1] => 30
[6,3,3] => [3,3,3,1,1,1] => 30
[6,3,2,1] => [4,3,2,1,1,1] => 32
[6,3,1,1,1] => [5,2,2,1,1,1] => 36
[6,2,2,2] => [4,4,1,1,1,1] => 36
[6,2,2,1,1] => [5,3,1,1,1,1] => 38
[6,2,1,1,1,1] => [6,2,1,1,1,1] => 44
[6,1,1,1,1,1,1] => [7,1,1,1,1,1] => 54
[5,5,2] => [3,3,2,2,2] => 30
[5,5,1,1] => [4,2,2,2,2] => 32
[5,4,3] => [3,3,3,2,1] => 32
[5,4,2,1] => [4,3,2,2,1] => 34
[5,4,1,1,1] => [5,2,2,2,1] => 38
[5,3,3,1] => [4,3,3,1,1] => 36
[5,3,2,2] => [4,4,2,1,1] => 38
[5,3,2,1,1] => [5,3,2,1,1] => 40
[5,3,1,1,1,1] => [6,2,2,1,1] => 46
[5,2,2,2,1] => [5,4,1,1,1] => 44
[5,2,2,1,1,1] => [6,3,1,1,1] => 48
[5,2,1,1,1,1,1] => [7,2,1,1,1] => 56
[5,1,1,1,1,1,1,1] => [8,1,1,1,1] => 68
[4,4,4] => [3,3,3,3] => 36
[4,4,3,1] => [4,3,3,2] => 38
[4,4,2,2] => [4,4,2,2] => 40
[4,4,2,1,1] => [5,3,2,2] => 42
[4,4,1,1,1,1] => [6,2,2,2] => 48
[4,3,3,2] => [4,4,3,1] => 42
[4,3,3,1,1] => [5,3,3,1] => 44
[4,3,2,2,1] => [5,4,2,1] => 46
[4,3,2,1,1,1] => [6,3,2,1] => 50
[4,3,1,1,1,1,1] => [7,2,2,1] => 58
[4,2,2,2,2] => [5,5,1,1] => 52
[4,2,2,2,1,1] => [6,4,1,1] => 54
[4,2,2,1,1,1,1] => [7,3,1,1] => 60
[4,2,1,1,1,1,1,1] => [8,2,1,1] => 70
[4,1,1,1,1,1,1,1,1] => [9,1,1,1] => 84
[3,3,3,3] => [4,4,4] => 48
[3,3,3,2,1] => [5,4,3] => 50
[3,3,3,1,1,1] => [6,3,3] => 54
[3,3,2,2,2] => [5,5,2] => 54
[3,3,2,2,1,1] => [6,4,2] => 56
[3,3,2,1,1,1,1] => [7,3,2] => 62
[3,3,1,1,1,1,1,1] => [8,2,2] => 72
[3,2,2,2,2,1] => [6,5,1] => 62
[3,2,2,2,1,1,1] => [7,4,1] => 66
[3,2,2,1,1,1,1,1] => [8,3,1] => 74
[3,2,1,1,1,1,1,1,1] => [9,2,1] => 86
[3,1,1,1,1,1,1,1,1,1] => [10,1,1] => 102
[2,2,2,2,2,2] => [6,6] => 72
[2,2,2,2,2,1,1] => [7,5] => 74
[2,2,2,2,1,1,1,1] => [8,4] => 80
[2,2,2,1,1,1,1,1,1] => [9,3] => 90
[2,2,1,1,1,1,1,1,1,1] => [10,2] => 104
[2,1,1,1,1,1,1,1,1,1,1] => [11,1] => 122
[1,1,1,1,1,1,1,1,1,1,1,1] => [12] => 144
[5,4,3,1] => [4,3,3,2,1] => 39
[5,4,2,2] => [4,4,2,2,1] => 41
[5,4,2,1,1] => [5,3,2,2,1] => 43
[5,3,3,2] => [4,4,3,1,1] => 43
[5,3,3,1,1] => [5,3,3,1,1] => 45
[5,3,2,2,1] => [5,4,2,1,1] => 47
[4,4,3,2] => [4,4,3,2] => 45
[4,4,3,1,1] => [5,3,3,2] => 47
[4,4,2,2,1] => [5,4,2,2] => 49
[4,3,3,2,1] => [5,4,3,1] => 51
[5,4,3,2] => [4,4,3,2,1] => 46
[5,4,3,1,1] => [5,3,3,2,1] => 48
[5,4,2,2,1] => [5,4,2,2,1] => 50
[5,3,3,2,1] => [5,4,3,1,1] => 52
[4,4,3,2,1] => [5,4,3,2] => 54
[5,4,3,2,1] => [5,4,3,2,1] => 55
[] => [] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The sum of the squares of the parts of a partition.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.