Identifier
Values
[1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => 1
[1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => 1
[1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => 1
[1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => 1
[1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => 1
[1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
[1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
[1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 1
[1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 1
[1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 1
[1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 1
[1,0,1,1,1,0,1,0,0,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => 2
[1,0,1,1,1,1,0,0,0,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => 2
[1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 1
[1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 1
[1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 1
[1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 1
[1,1,0,1,1,0,1,0,0,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => 2
[1,1,0,1,1,1,0,0,0,0] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => 2
[1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 1
[1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 1
[1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 1
[1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 1
[1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(3,6),(4,5)],7) => 1
[1,1,1,0,1,0,0,0,1,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => 2
[1,1,1,0,1,0,0,1,0,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => 2
[1,1,1,1,0,0,0,0,1,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => 2
[1,1,1,1,0,0,0,1,0,0] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,0,1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,0,1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,0,1,1,1,0,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,0,1,1,1,0,0,0,1,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,0,1,1,1,0,0,1,0,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,0,1,1,1,0,0,1,0,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,1,0,0,1,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,1,0,0,1,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,1,0,1,0,0,1,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,1,0,1,0,1,0,1,1,0,0,0] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
[1,1,0,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
[1,1,0,1,1,0,0,0,1,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,1,0,1,1,0,0,0,1,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,1,0,1,1,0,0,1,0,0,1,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,1,0,1,1,0,0,1,0,1,0,0] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
[1,1,1,0,0,0,1,0,1,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,1,0,0,0,1,0,1,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,1,0,0,0,1,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,1,0,0,0,1,1,0,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,1,0,0,1,0,0,1,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,1,0,0,1,0,0,1,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,1,0,0,1,0,1,0,0,1,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
[1,1,1,0,0,1,0,1,0,1,0,0] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
search for individual values
searching the database for the individual values of this statistic
Description
The acyclic chromatic index of a graph.
An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest.
The smallest number of colours such that such a colouring exists is the acyclic chromatic index.
An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest.
The smallest number of colours such that such a colouring exists is the acyclic chromatic index.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the cell poset of $\gamma(D)$. In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!