Processing math: 100%

Identifier
Values
0 => ([(0,1)],2) => ([(0,1)],2) => 1
1 => ([(0,1)],2) => ([(0,1)],2) => 1
00 => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 2
01 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 3
10 => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 3
11 => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 2
000 => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 3
001 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 5
010 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 5
011 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 5
100 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 5
101 => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 5
110 => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 5
111 => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 3
0000 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
1111 => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 4
00000 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 5
11111 => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 5
000000 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
111111 => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of positive eigenvalues of the Laplacian matrix of the graph.
This is the number of vertices minus the number of connected components of the graph.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
poset of factors
Description
The poset of factors of a binary word.
This is the partial order on the set of distinct factors of a binary word, such that u<v if and only if u is a factor of v.