Identifier
-
Mp00095:
Integer partitions
—to binary word⟶
Binary words
St000921: Binary words ⟶ ℤ
Values
[1] => 10 => 0
[2] => 100 => 1
[1,1] => 110 => 1
[3] => 1000 => 2
[2,1] => 1010 => 2
[1,1,1] => 1110 => 2
[4] => 10000 => 3
[3,1] => 10010 => 3
[2,2] => 1100 => 0
[2,1,1] => 10110 => 3
[1,1,1,1] => 11110 => 3
[5] => 100000 => 4
[4,1] => 100010 => 4
[3,2] => 10100 => 1
[3,1,1] => 100110 => 4
[2,2,1] => 11010 => 1
[2,1,1,1] => 101110 => 4
[1,1,1,1,1] => 111110 => 4
[6] => 1000000 => 5
[5,1] => 1000010 => 5
[4,2] => 100100 => 2
[4,1,1] => 1000110 => 5
[3,3] => 11000 => 2
[3,2,1] => 101010 => 2
[3,1,1,1] => 1001110 => 5
[2,2,2] => 11100 => 2
[2,2,1,1] => 110110 => 2
[2,1,1,1,1] => 1011110 => 5
[1,1,1,1,1,1] => 1111110 => 5
[7] => 10000000 => 6
[6,1] => 10000010 => 6
[5,2] => 1000100 => 3
[5,1,1] => 10000110 => 6
[4,3] => 101000 => 3
[4,2,1] => 1001010 => 3
[4,1,1,1] => 10001110 => 6
[3,3,1] => 110010 => 3
[3,2,2] => 101100 => 3
[3,2,1,1] => 1010110 => 3
[3,1,1,1,1] => 10011110 => 6
[2,2,2,1] => 111010 => 3
[2,2,1,1,1] => 1101110 => 3
[2,1,1,1,1,1] => 10111110 => 6
[1,1,1,1,1,1,1] => 11111110 => 6
[8] => 100000000 => 7
[7,1] => 100000010 => 7
[6,2] => 10000100 => 4
[6,1,1] => 100000110 => 7
[5,3] => 1001000 => 4
[5,2,1] => 10001010 => 4
[5,1,1,1] => 100001110 => 7
[4,4] => 110000 => 4
[4,3,1] => 1010010 => 4
[4,2,2] => 1001100 => 4
[4,2,1,1] => 10010110 => 4
[4,1,1,1,1] => 100011110 => 7
[3,3,2] => 110100 => 4
[3,3,1,1] => 1100110 => 4
[3,2,2,1] => 1011010 => 4
[3,2,1,1,1] => 10101110 => 4
[3,1,1,1,1,1] => 100111110 => 7
[2,2,2,2] => 111100 => 4
[2,2,2,1,1] => 1110110 => 4
[2,2,1,1,1,1] => 11011110 => 4
[2,1,1,1,1,1,1] => 101111110 => 7
[1,1,1,1,1,1,1,1] => 111111110 => 7
[9] => 1000000000 => 8
[8,1] => 1000000010 => 8
[7,2] => 100000100 => 5
[7,1,1] => 1000000110 => 8
[6,3] => 10001000 => 5
[6,2,1] => 100001010 => 5
[6,1,1,1] => 1000001110 => 8
[5,4] => 1010000 => 5
[5,3,1] => 10010010 => 5
[5,2,2] => 10001100 => 5
[5,2,1,1] => 100010110 => 5
[5,1,1,1,1] => 1000011110 => 8
[4,4,1] => 1100010 => 5
[4,3,2] => 1010100 => 5
[4,3,1,1] => 10100110 => 5
[4,2,2,1] => 10011010 => 5
[4,2,1,1,1] => 100101110 => 5
[4,1,1,1,1,1] => 1000111110 => 8
[3,3,3] => 111000 => 0
[3,3,2,1] => 1101010 => 5
[3,3,1,1,1] => 11001110 => 5
[3,2,2,2] => 1011100 => 5
[3,2,2,1,1] => 10110110 => 5
[3,2,1,1,1,1] => 101011110 => 5
[3,1,1,1,1,1,1] => 1001111110 => 8
[2,2,2,2,1] => 1111010 => 5
[2,2,2,1,1,1] => 11101110 => 5
[2,2,1,1,1,1,1] => 110111110 => 5
[2,1,1,1,1,1,1,1] => 1011111110 => 8
[1,1,1,1,1,1,1,1,1] => 1111111110 => 8
[10] => 10000000000 => 9
[9,1] => 10000000010 => 9
[8,2] => 1000000100 => 6
[8,1,1] => 10000000110 => 9
[7,3] => 100001000 => 6
>>> Load all 359 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of internal inversions of a binary word.
Let $\bar w$ be the non-decreasing rearrangement of $w$, that is, $\bar w$ is sorted.
An internal inversion is a pair $i < j$ such that $w_i > w_j$ and $\bar w_i = \bar w_j$. For example, the word $110$ has two inversions, but only the second is internal.
Let $\bar w$ be the non-decreasing rearrangement of $w$, that is, $\bar w$ is sorted.
An internal inversion is a pair $i < j$ such that $w_i > w_j$ and $\bar w_i = \bar w_j$. For example, the word $110$ has two inversions, but only the second is internal.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!