Identifier
-
Mp00095:
Integer partitions
—to binary word⟶
Binary words
Mp00224: Binary words —runsort⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
St000875: Binary words ⟶ ℤ
Values
[1] => 10 => 01 => 10 => 1
[2] => 100 => 001 => 100 => 1
[1,1] => 110 => 011 => 110 => 1
[3] => 1000 => 0001 => 1000 => 1
[2,1] => 1010 => 0011 => 1100 => 2
[1,1,1] => 1110 => 0111 => 1110 => 1
[4] => 10000 => 00001 => 10000 => 1
[3,1] => 10010 => 00011 => 11000 => 2
[2,2] => 1100 => 0011 => 1100 => 2
[2,1,1] => 10110 => 00111 => 11100 => 2
[1,1,1,1] => 11110 => 01111 => 11110 => 1
[5] => 100000 => 000001 => 100000 => 1
[4,1] => 100010 => 000011 => 110000 => 2
[3,2] => 10100 => 00011 => 11000 => 2
[3,1,1] => 100110 => 000111 => 111000 => 3
[2,2,1] => 11010 => 00111 => 11100 => 2
[2,1,1,1] => 101110 => 001111 => 111100 => 2
[1,1,1,1,1] => 111110 => 011111 => 111110 => 1
[6] => 1000000 => 0000001 => 1000000 => 1
[5,1] => 1000010 => 0000011 => 1100000 => 2
[4,2] => 100100 => 000011 => 110000 => 2
[4,1,1] => 1000110 => 0000111 => 1110000 => 3
[3,3] => 11000 => 00011 => 11000 => 2
[3,2,1] => 101010 => 001011 => 110100 => 3
[3,1,1,1] => 1001110 => 0001111 => 1111000 => 3
[2,2,2] => 11100 => 00111 => 11100 => 2
[2,2,1,1] => 110110 => 001111 => 111100 => 2
[2,1,1,1,1] => 1011110 => 0011111 => 1111100 => 2
[1,1,1,1,1,1] => 1111110 => 0111111 => 1111110 => 1
[7] => 10000000 => 00000001 => 10000000 => 1
[6,1] => 10000010 => 00000011 => 11000000 => 2
[5,2] => 1000100 => 0000011 => 1100000 => 2
[5,1,1] => 10000110 => 00000111 => 11100000 => 3
[4,3] => 101000 => 000011 => 110000 => 2
[4,2,1] => 1001010 => 0001011 => 1101000 => 3
[4,1,1,1] => 10001110 => 00001111 => 11110000 => 4
[3,3,1] => 110010 => 000111 => 111000 => 3
[3,2,2] => 101100 => 000111 => 111000 => 3
[3,2,1,1] => 1010110 => 0010111 => 1110100 => 3
[3,1,1,1,1] => 10011110 => 00011111 => 11111000 => 3
[2,2,2,1] => 111010 => 001111 => 111100 => 2
[2,2,1,1,1] => 1101110 => 0011111 => 1111100 => 2
[2,1,1,1,1,1] => 10111110 => 00111111 => 11111100 => 2
[1,1,1,1,1,1,1] => 11111110 => 01111111 => 11111110 => 1
[8] => 100000000 => 000000001 => 100000000 => 1
[7,1] => 100000010 => 000000011 => 110000000 => 2
[6,2] => 10000100 => 00000011 => 11000000 => 2
[6,1,1] => 100000110 => 000000111 => 111000000 => 3
[5,3] => 1001000 => 0000011 => 1100000 => 2
[5,2,1] => 10001010 => 00001011 => 11010000 => 3
[5,1,1,1] => 100001110 => 000001111 => 111100000 => 4
[4,4] => 110000 => 000011 => 110000 => 2
[4,3,1] => 1010010 => 0001011 => 1101000 => 3
[4,2,2] => 1001100 => 0000111 => 1110000 => 3
[4,2,1,1] => 10010110 => 00010111 => 11101000 => 4
[4,1,1,1,1] => 100011110 => 000011111 => 111110000 => 4
[3,3,2] => 110100 => 000111 => 111000 => 3
[3,3,1,1] => 1100110 => 0001111 => 1111000 => 3
[3,2,2,1] => 1011010 => 0010111 => 1110100 => 3
[3,2,1,1,1] => 10101110 => 00101111 => 11110100 => 3
[3,1,1,1,1,1] => 100111110 => 000111111 => 111111000 => 3
[2,2,2,2] => 111100 => 001111 => 111100 => 2
[2,2,2,1,1] => 1110110 => 0011111 => 1111100 => 2
[2,2,1,1,1,1] => 11011110 => 00111111 => 11111100 => 2
[2,1,1,1,1,1,1] => 101111110 => 001111111 => 111111100 => 2
[1,1,1,1,1,1,1,1] => 111111110 => 011111111 => 111111110 => 1
[9] => 1000000000 => 0000000001 => 1000000000 => 1
[7,2] => 100000100 => 000000011 => 110000000 => 2
[6,3] => 10001000 => 00000011 => 11000000 => 2
[6,2,1] => 100001010 => 000001011 => 110100000 => 3
[5,4] => 1010000 => 0000011 => 1100000 => 2
[5,3,1] => 10010010 => 00010011 => 11001000 => 3
[5,2,2] => 10001100 => 00000111 => 11100000 => 3
[5,2,1,1] => 100010110 => 000010111 => 111010000 => 4
[5,1,1,1,1] => 1000011110 => 0000011111 => 1111100000 => 5
[4,4,1] => 1100010 => 0000111 => 1110000 => 3
[4,3,2] => 1010100 => 0001011 => 1101000 => 3
[4,3,1,1] => 10100110 => 00011011 => 11011000 => 4
[4,2,2,1] => 10011010 => 00011011 => 11011000 => 4
[4,2,1,1,1] => 100101110 => 000101111 => 111101000 => 4
[3,3,3] => 111000 => 000111 => 111000 => 3
[3,3,2,1] => 1101010 => 0010111 => 1110100 => 3
[3,3,1,1,1] => 11001110 => 00011111 => 11111000 => 3
[3,2,2,2] => 1011100 => 0001111 => 1111000 => 3
[3,2,2,1,1] => 10110110 => 00110111 => 11101100 => 3
[3,2,1,1,1,1] => 101011110 => 001011111 => 111110100 => 3
[2,2,2,2,1] => 1111010 => 0011111 => 1111100 => 2
[2,2,2,1,1,1] => 11101110 => 00111111 => 11111100 => 2
[2,2,1,1,1,1,1] => 110111110 => 001111111 => 111111100 => 2
[1,1,1,1,1,1,1,1,1] => 1111111110 => 0111111111 => 1111111110 => 1
[10] => 10000000000 => 00000000001 => 10000000000 => 1
[7,3] => 100001000 => 000000011 => 110000000 => 2
[6,4] => 10010000 => 00000011 => 11000000 => 2
[6,3,1] => 100010010 => 000010011 => 110010000 => 3
[6,2,2] => 100001100 => 000000111 => 111000000 => 3
[5,5] => 1100000 => 0000011 => 1100000 => 2
[5,4,1] => 10100010 => 00001011 => 11010000 => 3
[5,3,2] => 10010100 => 00001011 => 11010000 => 3
[5,3,1,1] => 100100110 => 000100111 => 111001000 => 4
[5,2,2,1] => 100011010 => 000011011 => 110110000 => 4
[5,2,1,1,1] => 1000101110 => 0000101111 => 1111010000 => 5
>>> Load all 304 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The semilength of the longest Dyck word in the Catalan factorisation of a binary word.
Every binary word can be written in a unique way as (D0)ℓD(1D)m, where D is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2].
This statistic records the semilength of the longest Dyck word in this factorisation.
Every binary word can be written in a unique way as (D0)ℓD(1D)m, where D is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2].
This statistic records the semilength of the longest Dyck word in this factorisation.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
Map
runsort
Description
The word obtained by sorting the weakly increasing runs lexicographically.
Map
reverse
Description
Return the reversal of a binary word.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!