Identifier
Values
([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(0,1)],2) => ([(0,1)],2) => ([(0,1)],2) => 0
([],3) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([(1,2)],3) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 1
([(0,1),(0,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 0
([(0,2),(1,2)],3) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([],4) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 12
([(2,3)],4) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 6
([(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => 4
([(0,1),(0,2),(0,3)],4) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([(0,2),(0,3),(3,1)],4) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 1
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(1,2),(2,3)],4) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 2
([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 4
([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 3
([(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 0
([(0,3),(1,2),(2,3)],4) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 1
([],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 60
([(3,4)],5) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => 30
([(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => 20
([(1,2),(1,3),(1,4)],5) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => 15
([(0,1),(0,2),(0,3),(0,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 12
([(0,2),(0,3),(0,4),(4,1)],5) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(4,1),(4,2)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => 4
([(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
([(0,3),(0,4),(3,2),(4,1)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
([(0,4),(4,1),(4,2),(4,3)],5) => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 3
([(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 20
([(0,4),(1,4),(4,2),(4,3)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 15
([(0,4),(1,4),(2,4),(4,3)],5) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => 3
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 12
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 8
([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 4
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 6
([(1,4),(2,3)],5) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => 15
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
([(0,4),(1,2),(1,4),(4,3)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 3
([(0,4),(1,2),(1,3)],5) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => 10
([(0,4),(1,2),(1,3),(1,4)],5) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => 9
([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => 4
([(0,3),(0,4),(1,2),(1,4)],5) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => 8
([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 1
([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 1
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 3
([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 60
([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => 30
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 20
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 15
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 12
([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => 20
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => 3
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 8
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 4
([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => 15
([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => 15
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 3
([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => 10
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => 9
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => 8
([(0,5),(5,1),(5,2),(5,3),(5,4)],6) => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => 12
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => 3
([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => 12
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 60
([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 15
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => 30
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 8
([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => 4
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => 5
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 3
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => 20
([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => 6
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 3
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 20
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => 9
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 6
([(0,5),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => 15
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
>>> Load all 133 entries. <<<
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => 10
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => 5
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => 8
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 3
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => 15
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 60
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => 12
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 15
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 20
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 8
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => 4
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => 3
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => 15
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => 20
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => 8
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => 5
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => 9
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => 3
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => 15
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => 10
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => 12
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => 30
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => 6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The balance constant multiplied with the number of linear extensions of a poset.
A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion $P(x,y)$ of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$. The balance constant of a poset is $\max\min(P(x,y), P(y,x)).$
Kislitsyn [1] conjectured that every poset which is not a chain is $1/3$-balanced. Brightwell, Felsner and Trotter [2] show that it is at least $(1-\sqrt 5)/10$-balanced.
Olson and Sagan [3] exhibit various posets that are $1/2$-balanced.
Map
to poset
Description
Return the poset corresponding to the lattice.
Map
Dedekind-MacNeille completion
Description
Return the smallest lattice containing the poset.