Identifier
Values
([],2) => [1,1] => [[1],[2]] => [2,1] => 2
([(0,1)],2) => [2] => [[1,2]] => [1,2] => 0
([],3) => [1,1,1] => [[1],[2],[3]] => [3,2,1] => 4
([(1,2)],3) => [2,1] => [[1,3],[2]] => [2,1,3] => 2
([(0,1),(0,2)],3) => [2,1] => [[1,3],[2]] => [2,1,3] => 2
([(0,2),(2,1)],3) => [3] => [[1,2,3]] => [1,2,3] => 0
([(0,2),(1,2)],3) => [2,1] => [[1,3],[2]] => [2,1,3] => 2
([],4) => [1,1,1,1] => [[1],[2],[3],[4]] => [4,3,2,1] => 6
([(2,3)],4) => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 4
([(1,2),(1,3)],4) => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 4
([(0,1),(0,2),(0,3)],4) => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 4
([(0,2),(0,3),(3,1)],4) => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 2
([(0,1),(0,2),(1,3),(2,3)],4) => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 2
([(1,2),(2,3)],4) => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 2
([(0,3),(3,1),(3,2)],4) => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 2
([(1,3),(2,3)],4) => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 4
([(0,3),(1,3),(3,2)],4) => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 2
([(0,3),(1,3),(2,3)],4) => [2,1,1] => [[1,4],[2],[3]] => [3,2,1,4] => 4
([(0,3),(1,2)],4) => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
([(0,3),(1,2),(1,3)],4) => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => [[1,2],[3,4]] => [3,4,1,2] => 2
([(0,3),(2,1),(3,2)],4) => [4] => [[1,2,3,4]] => [1,2,3,4] => 0
([(0,3),(1,2),(2,3)],4) => [3,1] => [[1,3,4],[2]] => [2,1,3,4] => 2
([],5) => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => [5,4,3,2,1] => 8
([(3,4)],5) => [2,1,1,1] => [[1,5],[2],[3],[4]] => [4,3,2,1,5] => 6
([(2,3),(2,4)],5) => [2,1,1,1] => [[1,5],[2],[3],[4]] => [4,3,2,1,5] => 6
([(1,2),(1,3),(1,4)],5) => [2,1,1,1] => [[1,5],[2],[3],[4]] => [4,3,2,1,5] => 6
([(0,1),(0,2),(0,3),(0,4)],5) => [2,1,1,1] => [[1,5],[2],[3],[4]] => [4,3,2,1,5] => 6
([(0,2),(0,3),(0,4),(4,1)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(1,3),(1,4),(4,2)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,3),(0,4),(4,1),(4,2)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(1,2),(1,3),(2,4),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => [4,1] => [[1,3,4,5],[2]] => [2,1,3,4,5] => 2
([(0,3),(0,4),(3,2),(4,1)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(2,3),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(1,4),(4,2),(4,3)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,4),(4,1),(4,2),(4,3)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(2,4),(3,4)],5) => [2,1,1,1] => [[1,5],[2],[3],[4]] => [4,3,2,1,5] => 6
([(1,4),(2,4),(4,3)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,4),(1,4),(4,2),(4,3)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(1,4),(2,4),(3,4)],5) => [2,1,1,1] => [[1,5],[2],[3],[4]] => [4,3,2,1,5] => 6
([(0,4),(1,4),(2,4),(4,3)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,4),(1,4),(2,4),(3,4)],5) => [2,1,1,1] => [[1,5],[2],[3],[4]] => [4,3,2,1,5] => 6
([(0,4),(1,4),(2,3)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,4),(1,3),(2,3),(2,4)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,4),(1,4),(2,3),(4,2)],5) => [4,1] => [[1,3,4,5],[2]] => [2,1,3,4,5] => 2
([(0,4),(1,3),(2,3),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,4),(1,4),(2,3),(2,4)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,4),(1,4),(2,3),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(1,4),(2,3)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(1,4),(2,3),(2,4)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,4),(1,2),(1,4),(2,3)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,4),(1,2),(1,4),(4,3)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,4),(1,2),(1,3)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,4),(1,2),(1,3),(1,4)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,2),(0,4),(3,1),(4,3)],5) => [4,1] => [[1,3,4,5],[2]] => [2,1,3,4,5] => 2
([(0,4),(1,2),(1,3),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => [4,1] => [[1,3,4,5],[2]] => [2,1,3,4,5] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,3),(0,4),(1,2),(1,4)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => [2,2,1] => [[1,3],[2,5],[4]] => [4,2,5,1,3] => 4
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,3),(1,2),(1,4),(3,4)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(1,4),(3,2),(4,3)],5) => [4,1] => [[1,3,4,5],[2]] => [2,1,3,4,5] => 2
([(0,3),(3,4),(4,1),(4,2)],5) => [4,1] => [[1,3,4,5],[2]] => [2,1,3,4,5] => 2
([(1,4),(2,3),(3,4)],5) => [3,1,1] => [[1,4,5],[2],[3]] => [3,2,1,4,5] => 4
([(0,4),(1,2),(2,4),(4,3)],5) => [4,1] => [[1,3,4,5],[2]] => [2,1,3,4,5] => 2
([(0,3),(1,4),(4,2)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,4),(3,2),(4,1),(4,3)],5) => [4,1] => [[1,3,4,5],[2]] => [2,1,3,4,5] => 2
([(0,4),(1,2),(2,3),(2,4)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,4),(2,3),(3,1),(4,2)],5) => [5] => [[1,2,3,4,5]] => [1,2,3,4,5] => 0
([(0,3),(1,2),(2,4),(3,4)],5) => [3,2] => [[1,2,5],[3,4]] => [3,4,1,2,5] => 2
([(0,4),(1,2),(2,3),(3,4)],5) => [4,1] => [[1,3,4,5],[2]] => [2,1,3,4,5] => 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => [4,1] => [[1,3,4,5],[2]] => [2,1,3,4,5] => 2
([],6) => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => [6,5,4,3,2,1] => 10
([(4,5)],6) => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [5,4,3,2,1,6] => 8
([(3,4),(3,5)],6) => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [5,4,3,2,1,6] => 8
([(2,3),(2,4),(2,5)],6) => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [5,4,3,2,1,6] => 8
([(1,2),(1,3),(1,4),(1,5)],6) => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [5,4,3,2,1,6] => 8
([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [5,4,3,2,1,6] => 8
([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(1,3),(1,4),(1,5),(5,2)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(1,2),(1,3),(1,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
>>> Load all 405 entries. <<<
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(2,3),(2,4),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(1,4),(1,5),(5,2),(5,3)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(2,3),(2,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(1,2),(1,3),(2,5),(3,5),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(1,4),(1,5),(4,3),(5,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,3),(1,4),(3,5),(4,2),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(3,4),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(2,3),(3,4),(3,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(1,5),(5,2),(5,3),(5,4)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,5),(5,1),(5,2),(5,3),(5,4)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(1,4),(4,5),(5,2),(5,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(3,5),(4,5)],6) => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [5,4,3,2,1,6] => 8
([(2,5),(3,5),(5,4)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(1,5),(2,5),(5,3),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,5),(5,2),(5,3),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(2,5),(3,5),(4,5)],6) => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [5,4,3,2,1,6] => 8
([(1,5),(2,5),(3,5),(5,4)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,5),(1,5),(2,5),(5,3),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,5),(2,5),(3,5),(4,5)],6) => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [5,4,3,2,1,6] => 8
([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => [5,4,3,2,1,6] => 8
([(0,5),(1,5),(2,5),(3,4)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,5),(1,5),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(1,5),(2,5),(3,4)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(1,5),(2,4),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,4),(2,4),(2,5),(5,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,5),(2,5),(3,4),(5,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(1,5),(2,4),(3,4),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,5),(2,3),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,5),(4,2),(5,3),(5,4)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,5),(2,4),(5,3),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,5),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,5),(2,3),(2,5),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,5),(2,3),(2,5),(3,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,5),(2,3),(2,4)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(1,4),(2,3),(2,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,5),(2,3),(2,4),(2,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,5),(2,3),(2,4),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(1,5),(2,5),(3,4),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,5),(2,3),(3,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,4),(3,5),(4,2),(4,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,4),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,5),(2,3),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,5),(2,4),(3,4)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(2,5),(3,4)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(1,5),(2,3),(2,5),(3,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,4),(1,5),(4,2),(4,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,4),(1,5),(4,2),(5,3)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(2,4),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(1,4),(1,5),(2,4),(2,5),(5,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,4),(1,5),(5,2),(5,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,4),(0,5),(1,4),(1,5),(2,3)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,5),(2,3),(2,5),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,2),(1,5),(5,3),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,5),(2,3),(2,4)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(1,5),(2,3),(2,4),(2,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,3),(1,4),(1,5),(4,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,2),(1,3),(1,5),(5,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,2),(1,3),(1,4)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,5),(1,2),(1,3),(1,4),(1,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,2),(1,3),(1,4),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,4),(1,2),(1,3),(1,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,3),(1,5),(4,2),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(1,5),(2,3),(2,4),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,5),(1,2),(1,3),(3,5),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,3),(1,4),(3,5),(4,2),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,3),(1,5),(5,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,3),(1,4),(4,2),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(1,4),(1,5),(2,3),(2,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,4),(1,5),(4,3),(5,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(4,2),(5,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(5,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,3),(1,5),(5,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,4),(1,5),(2,3),(2,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(0,5),(1,2),(1,3)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => [5,3,2,6,1,4] => 6
([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,3),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(1,4),(2,3),(2,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,3),(1,5),(4,5),(5,2)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(1,4),(1,5),(2,3),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,5),(1,3),(1,4),(5,2)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,4),(1,3),(1,5),(4,2),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(2,3),(2,4),(2,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(2,5),(3,4),(4,5)],6) => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 6
([(1,5),(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,2),(2,5),(5,3),(5,4)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(1,3),(2,4),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,5),(4,3),(5,2),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(1,5),(2,3),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,4),(4,2),(4,5),(5,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(1,5),(5,2),(5,3)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,4),(4,2),(4,3),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(1,5),(3,4),(4,2),(5,3)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(1,4),(2,3),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,4),(4,2),(5,3)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,3),(1,4),(3,5),(4,2),(4,5)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6) => [3,3] => [[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 2
([(1,5),(2,3),(3,4),(4,5)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(1,4),(2,5),(3,5),(4,2),(4,3)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,5),(1,3),(2,4),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,5),(1,4),(2,3),(2,4),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,3),(1,5),(4,2),(5,4)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,4),(2,3),(2,4),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,4),(1,5),(2,3),(2,5)],6) => [2,2,2] => [[1,2],[3,4],[5,6]] => [5,6,3,4,1,2] => 4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,4),(2,3),(2,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,3),(4,2),(5,4)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(3,2),(4,1),(5,3),(5,4)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,4),(3,2),(4,3),(4,5)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,5),(1,3),(3,4),(4,2),(4,5)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [6] => [[1,2,3,4,5,6]] => [1,2,3,4,5,6] => 0
([(0,5),(1,3),(2,4),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,4),(2,3),(3,4),(3,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 4
([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [4,2] => [[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => [5,1] => [[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [3,2,1] => [[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 4
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [7] => [[1,2,3,4,5,6,7]] => [1,2,3,4,5,6,7] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The sum of the number of descents and the number of recoils of a permutation.
This statistic is the sum of St000021The number of descents of a permutation. and St000354The number of recoils of a permutation..
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau $T$ labeled down (in English convention) each column to the shape of a partition.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.