Identifier
Values
([],1) => ([(0,1)],2) => ([(0,1)],2) => [2] => 2
([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => [3,1] => 3
([(0,1)],2) => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => [3] => 3
([],3) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => [4,2,2] => 4
([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => 4
([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => [4,1] => 4
([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => [4] => 4
([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => [4,1] => 4
([(2,3)],4) => ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12) => ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12) => [5,3,3,1] => 5
([(1,2),(1,3)],4) => ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10) => ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10) => [5,3,2] => 5
([(0,1),(0,2),(0,3)],4) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => [5,2,2] => 5
([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => [5,2] => 5
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => [5,1] => 5
([(1,2),(2,3)],4) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => [5,3] => 5
([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => [5,1] => 5
([(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10) => ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10) => [5,3,2] => 5
([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => [5,1] => 5
([(0,3),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9) => [5,2,2] => 5
([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => [5,3,1] => 5
([(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => [5,3] => 5
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => [5,2] => 5
([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => [5] => 5
([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => [5,2] => 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11) => ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11) => [6,3,2] => 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10) => ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10) => [6,2,2] => 6
([(0,3),(0,4),(4,1),(4,2)],5) => ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11) => ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11) => [6,3,2] => 6
([(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12) => ([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12) => [6,4,2] => 6
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => [6,1] => 6
([(0,3),(0,4),(3,2),(4,1)],5) => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10) => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10) => [6,3,1] => 6
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => [6,3] => 6
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => [6,2] => 6
([(1,4),(4,2),(4,3)],5) => ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12) => ([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12) => [6,4,2] => 6
([(0,4),(4,1),(4,2),(4,3)],5) => ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10) => ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10) => [6,2,2] => 6
([(1,4),(2,4),(4,3)],5) => ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12) => ([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12) => [6,4,2] => 6
([(0,4),(1,4),(4,2),(4,3)],5) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => [6,2] => 6
([(0,4),(1,4),(2,4),(4,3)],5) => ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10) => ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10) => [6,2,2] => 6
([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12) => ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12) => [6,4,2] => 6
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11) => [6,3,2] => 6
([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => [6,1] => 6
([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11) => ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11) => [6,3,2] => 6
([(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11) => ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11) => [6,4,1] => 6
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => [6,3] => 6
([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => [6,3] => 6
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => [6,2] => 6
([(0,4),(1,2),(1,4),(4,3)],5) => ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10) => ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,1),(5,6),(6,4),(6,8),(8,9),(9,7)],10) => [6,4] => 6
([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => [6,3] => 6
([(0,4),(1,2),(1,3),(3,4)],5) => ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12) => ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12) => [6,4,2] => 6
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => [6,2] => 6
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11) => ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11) => [6,3,2] => 6
([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => ([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12) => ([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12) => [6,4,2] => 6
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11) => ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11) => [6,3,2] => 6
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10) => ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10) => [6,4] => 6
([(0,3),(1,2),(1,4),(3,4)],5) => ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11) => ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11) => [6,4,1] => 6
([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => [6,3] => 6
([(1,4),(3,2),(4,3)],5) => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10) => [6,4] => 6
([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => [6,1] => 6
([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => [6,2] => 6
([(0,3),(1,4),(4,2)],5) => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12) => [6,4,2] => 6
([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => [6,2] => 6
([(0,4),(1,2),(2,3),(2,4)],5) => ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10) => ([(0,3),(0,5),(1,8),(2,7),(3,6),(4,2),(4,9),(5,4),(5,6),(6,9),(7,8),(9,1),(9,7)],10) => [6,4] => 6
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [6] => 6
([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10) => ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10) => [6,3,1] => 6
([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => [6,3] => 6
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => [6,1] => 6
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10) => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10) => [7,3] => 7
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11) => ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11) => [7,4] => 7
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8) => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8) => [7,1] => 7
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [7] => 7
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11) => ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11) => [8,3] => 8
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11) => ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11) => [8,3] => 8
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => [8] => 8
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => [9] => 9
([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => [10] => 10
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The maximum of the length and the largest part of the integer partition.
This is the side length of the smallest square the Ferrers diagram of the partition fits into. It is also the minimal number of colours required to colour the cells of the Ferrers diagram such that no two cells in a column or in a row have the same colour, see [1].
See also St001214The aft of an integer partition..
This is the side length of the smallest square the Ferrers diagram of the partition fits into. It is also the minimal number of colours required to colour the cells of the Ferrers diagram such that no two cells in a column or in a row have the same colour, see [1].
See also St001214The aft of an integer partition..
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal I in a poset P is a downward closed set, i.e., a∈I and b≤a implies b∈I. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
An order ideal I in a poset P is a downward closed set, i.e., a∈I and b≤a implies b∈I. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
to poset
Description
Return the poset corresponding to the lattice.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!