Identifier
Values
([],3) => [3,3] => [3] => 1
([(2,3)],4) => [4,4,4] => [4,4] => 2
([(0,1),(0,2),(0,3)],4) => [3,3] => [3] => 1
([(0,3),(1,3),(2,3)],4) => [3,3] => [3] => 1
([(0,3),(1,2)],4) => [4,2] => [2] => 2
([(0,3),(1,2),(1,3)],4) => [3,2] => [2] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => [2] => 2
([(0,2),(0,3),(0,4),(4,1)],5) => [4,4,4] => [4,4] => 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => [3,3] => [3] => 1
([(1,2),(1,3),(2,4),(3,4)],5) => [5,5] => [5] => 1
([(0,3),(0,4),(3,2),(4,1)],5) => [4,2] => [2] => 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => [2] => 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => [2,2] => [2] => 2
([(1,4),(4,2),(4,3)],5) => [5,5] => [5] => 1
([(0,4),(4,1),(4,2),(4,3)],5) => [3,3] => [3] => 1
([(1,4),(2,4),(4,3)],5) => [5,5] => [5] => 1
([(0,4),(1,4),(4,2),(4,3)],5) => [2,2] => [2] => 2
([(0,4),(1,4),(2,4),(4,3)],5) => [3,3] => [3] => 1
([(0,4),(1,4),(2,3)],5) => [10,10] => [10] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [12,4] => [4] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6,6] => [6] => 2
([(0,4),(1,4),(2,3),(2,4)],5) => [10,4,4] => [4,4] => 2
([(0,4),(1,4),(2,3),(3,4)],5) => [4,4,4] => [4,4] => 2
([(1,4),(2,3),(2,4)],5) => [15,5,5] => [5,5] => 1
([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => [4] => 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => [2] => 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => [2,2] => [2] => 2
([(0,4),(1,2),(1,3)],5) => [10,10] => [10] => 2
([(0,4),(1,2),(1,3),(1,4)],5) => [10,4,4] => [4,4] => 2
([(0,4),(1,2),(1,3),(3,4)],5) => [4,4,3] => [4,3] => 2
([(0,3),(0,4),(1,2),(1,4)],5) => [12,4] => [4] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => [6,6] => [6] => 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => [5,3] => [3] => 1
([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => [4] => 2
([(0,3),(1,4),(4,2)],5) => [5,5] => [5] => 1
([(0,3),(1,2),(2,4),(3,4)],5) => [4,2] => [2] => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => [3,3] => [3] => 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6) => [10,10] => [10] => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6) => [12,4] => [4] => 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6,6] => [6] => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6) => [10,4,4] => [4,4] => 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6) => [5,5] => [5] => 1
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6) => [15,5,5] => [5,5] => 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => [2,2] => [2] => 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [2,2] => [2] => 2
([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => [10,10] => [10] => 2
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6) => [10,4,4] => [4,4] => 2
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => [12,4] => [4] => 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [6,6] => [6] => 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => [3,3] => [3] => 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6) => [6,6] => [6] => 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6) => [6,6] => [6] => 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => [3,3] => [3] => 1
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => [12,4] => [4] => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [6,6] => [6] => 2
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => [10,4,4] => [4,4] => 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => [2,2] => [2] => 2
([(0,3),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [8,8] => [8] => 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6) => [5,5] => [5] => 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => [4,2] => [2] => 2
([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => [4,4,4] => [4,4] => 2
([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => [10,10] => [10] => 2
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => [5,5] => [5] => 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => [3,3] => [3] => 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => [5,5] => [5] => 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => [2,2] => [2] => 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => [8,4,2] => [4,2] => 2
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) => [6,2,2] => [2,2] => 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => [3,2] => [2] => 2
([(0,5),(1,4),(1,5),(4,2),(5,3)],6) => [14,2] => [2] => 2
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6) => [10,2] => [2] => 2
([(0,4),(0,5),(1,4),(1,5),(5,2),(5,3)],6) => [8,8] => [8] => 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6) => [4,4,2,2] => [4,2,2] => 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) => [6,2,2] => [2,2] => 2
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => [2,2,2,2] => [2,2,2] => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6) => [4,4] => [4] => 2
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => [2,2] => [2] => 2
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => [10,4,4] => [4,4] => 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => [4,4,4] => [4,4] => 2
([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => [5,5] => [5] => 1
([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [5,5] => [5] => 1
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => [4] => 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => [2] => 2
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => [5,4] => [4] => 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => [5,3] => [3] => 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => [4,4,3] => [4,3] => 2
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) => [4,4,3] => [4,3] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [10,10] => [10] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => [5,5] => [5] => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(4,2),(5,2)],6) => [8,8] => [8] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => [6,6] => [6] => 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6) => [13,2] => [2] => 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6) => [8,3] => [3] => 1
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => [5,3] => [3] => 1
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => [8,3,2] => [3,2] => 1
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6) => [12,4] => [4] => 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6) => [6,4,3] => [4,3] => 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [8,8] => [8] => 2
([(0,4),(1,3),(1,5),(4,5),(5,2)],6) => [9,3] => [3] => 1
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6) => [3,3,3] => [3,3] => 1
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [5,4] => [4] => 2
>>> Load all 321 entries. <<<
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6) => [13,2] => [2] => 2
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6) => [8,3] => [3] => 1
([(0,5),(1,4),(4,2),(4,5),(5,3)],6) => [4,3,3] => [3,3] => 1
([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => [4,4,4] => [4,4] => 2
([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => [4,2] => [2] => 2
([(0,3),(1,4),(3,5),(4,2),(4,5)],6) => [14,2] => [2] => 2
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6) => [4,4,2,2] => [4,2,2] => 2
([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => [6,5,3] => [5,3] => 1
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,4] => [4] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [15,5,5] => [5,5] => 1
([(0,5),(1,3),(1,5),(4,2),(5,4)],6) => [5,4] => [4] => 2
([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => [6,5,3] => [5,3] => 1
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6) => [4,4] => [4] => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => [2,2] => [2] => 2
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => [3,2] => [2] => 2
([(0,5),(1,3),(4,2),(5,4)],6) => [6,6,3] => [6,3] => 2
([(0,5),(3,2),(4,1),(5,3),(5,4)],6) => [4,2] => [2] => 2
([(0,5),(1,4),(3,2),(4,3),(4,5)],6) => [9,3] => [3] => 1
([(0,5),(1,3),(3,4),(4,2),(4,5)],6) => [5,4] => [4] => 2
([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [5,5] => [5] => 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7) => [6,6] => [6] => 2
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => [6,6] => [6] => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [12,4] => [4] => 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [8,8] => [8] => 2
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7) => [6,6] => [6] => 2
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1),(6,2)],7) => [8,8] => [8] => 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7) => [2,2] => [2] => 2
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(5,2),(6,1)],7) => [4,4,2,2] => [4,2,2] => 2
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7) => [6,2,2] => [2,2] => 2
([(0,1),(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => [2,2,2,2] => [2,2,2] => 2
([(0,1),(0,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7) => [8,8] => [8] => 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [6,6] => [6] => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,3)],7) => [6,6] => [6] => 2
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7) => [3,3] => [3] => 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => [3,3] => [3] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(6,3),(6,4)],7) => [6,6] => [6] => 2
([(0,5),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7) => [6,6] => [6] => 2
([(0,5),(1,4),(2,4),(2,5),(4,6),(5,6),(6,3)],7) => [12,4] => [4] => 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,4)],7) => [6,6] => [6] => 2
([(0,6),(1,5),(2,5),(5,6),(6,3),(6,4)],7) => [8,8] => [8] => 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4),(6,5)],7) => [10,4,4] => [4,4] => 2
([(0,6),(1,6),(5,2),(5,3),(6,4),(6,5)],7) => [8,8] => [8] => 2
([(0,6),(1,6),(5,2),(5,3),(5,4),(6,5)],7) => [6,6] => [6] => 2
([(0,6),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7) => [8,8] => [8] => 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => [12,4] => [4] => 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => [5,5] => [5] => 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => [10,4,4] => [4,4] => 2
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7) => [2,2] => [2] => 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => [2,2] => [2] => 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => [10,10] => [10] => 2
([(1,6),(2,6),(3,5),(5,4),(6,3)],7) => [7,7] => [7] => 1
([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7) => [10,10] => [10] => 2
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7) => [4,4] => [4] => 2
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7) => [2,2] => [2] => 2
([(1,4),(2,6),(3,6),(4,5),(5,2),(5,3)],7) => [7,7] => [7] => 1
([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7) => [5,5] => [5] => 1
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7) => [2,2] => [2] => 2
([(0,6),(1,6),(3,5),(4,5),(6,2),(6,3),(6,4)],7) => [8,8] => [8] => 2
([(0,6),(1,6),(4,3),(5,2),(6,4),(6,5)],7) => [4,4,2,2] => [4,2,2] => 2
([(0,6),(1,6),(3,5),(4,2),(4,5),(6,3),(6,4)],7) => [6,2,2] => [2,2] => 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,3)],7) => [10,10] => [10] => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(6,2),(6,3)],7) => [2,2,2,2] => [2,2,2] => 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(6,2),(6,3)],7) => [10,10] => [10] => 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(5,3),(6,2)],7) => [4,4,2,2] => [4,2,2] => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7) => [6,2,2] => [2,2] => 2
([(0,5),(0,6),(1,5),(1,6),(3,2),(4,2),(5,3),(5,4),(6,3),(6,4)],7) => [2,2,2,2] => [2,2,2] => 2
([(0,4),(0,5),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3)],7) => [8,8] => [8] => 2
([(0,6),(1,6),(2,3),(3,6),(4,5),(6,4)],7) => [4,4,4] => [4,4] => 2
([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7) => [6,2,2] => [2,2] => 2
([(0,5),(1,4),(1,5),(3,6),(4,3),(5,6),(6,2)],7) => [5,4] => [4] => 2
([(0,6),(1,3),(1,6),(3,5),(5,4),(6,2),(6,5)],7) => [11,3,3] => [3,3] => 1
([(0,6),(1,2),(1,6),(2,3),(3,4),(3,5),(6,4),(6,5)],7) => [10,4,4] => [4,4] => 2
([(0,5),(0,6),(1,5),(1,6),(4,3),(5,4),(6,2)],7) => [10,10] => [10] => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(5,4),(6,2),(6,4)],7) => [10,4,4] => [4,4] => 2
([(0,5),(0,6),(1,5),(1,6),(4,2),(5,3),(5,4),(6,3),(6,4)],7) => [6,6] => [6] => 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(5,2),(5,3),(6,3),(6,4)],7) => [10,6] => [6] => 2
([(0,5),(0,6),(1,5),(1,6),(3,4),(5,3),(6,2),(6,4)],7) => [10,4,4] => [4,4] => 2
([(0,5),(0,6),(1,5),(1,6),(4,2),(4,3),(6,4)],7) => [10,10] => [10] => 2
([(0,5),(0,6),(1,5),(1,6),(4,2),(4,3),(5,4),(6,4)],7) => [2,2,2,2] => [2,2,2] => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(5,2),(6,3),(6,4)],7) => [6,6] => [6] => 2
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,2),(4,1)],7) => [4,4,2,2] => [4,2,2] => 2
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2)],7) => [8,8] => [8] => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7) => [2,2] => [2] => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(5,2),(6,4)],7) => [4,4] => [4] => 2
([(0,5),(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2),(4,3)],7) => [10,10] => [10] => 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7) => [6,6] => [6] => 2
([(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(5,6),(6,4)],7) => [10,4,4] => [4,4] => 2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => [4,4,4] => [4,4] => 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => [15,5,5] => [5,5] => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7) => [5,5] => [5] => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7) => [10,4,4] => [4,4] => 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7) => [10,10] => [10] => 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7) => [3,3] => [3] => 1
([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7) => [8,4,2] => [4,2] => 2
([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7) => [6,2,2] => [2,2] => 2
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => [3,2] => [2] => 2
([(0,3),(0,5),(3,6),(4,1),(5,4),(5,6),(6,2)],7) => [14,2] => [2] => 2
([(0,3),(0,4),(2,5),(3,6),(4,2),(4,6),(6,1),(6,5)],7) => [10,2] => [2] => 2
([(0,3),(0,5),(3,6),(4,1),(4,6),(5,4),(6,2)],7) => [4,3,3] => [3,3] => 1
([(0,2),(0,3),(1,4),(1,6),(2,4),(2,5),(3,1),(3,5),(5,6)],7) => [8,3,2] => [3,2] => 1
([(0,3),(0,4),(2,6),(3,5),(3,6),(4,2),(4,5),(6,1)],7) => [8,3] => [3] => 1
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5),(4,6),(5,6)],7) => [5,3] => [3] => 1
([(0,3),(0,4),(2,5),(3,5),(3,6),(4,2),(4,6),(6,1)],7) => [13,2] => [2] => 2
([(0,4),(0,5),(2,6),(4,2),(5,1),(5,6),(6,3)],7) => [9,3] => [3] => 1
([(0,6),(1,2),(1,3),(2,6),(3,6),(6,4),(6,5)],7) => [8,8] => [8] => 2
([(0,2),(1,3),(1,6),(2,6),(3,4),(3,5),(6,4),(6,5)],7) => [10,4,4] => [4,4] => 2
([(0,3),(1,2),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => [13,2] => [2] => 2
([(0,4),(1,3),(1,5),(3,6),(4,5),(5,6),(6,2)],7) => [5,4] => [4] => 2
([(0,2),(0,4),(1,5),(1,6),(2,5),(2,6),(3,1),(4,3)],7) => [4,4] => [4] => 2
([(0,2),(0,5),(2,6),(3,4),(4,1),(4,6),(5,3)],7) => [5,4] => [4] => 2
([(0,5),(1,3),(1,4),(3,6),(4,5),(5,6),(6,2)],7) => [4,4,3] => [4,3] => 2
([(0,5),(1,2),(1,3),(2,6),(3,6),(5,6),(6,4)],7) => [10,10] => [10] => 2
([(0,5),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7) => [5,5] => [5] => 1
([(1,3),(1,4),(3,6),(4,6),(5,2),(6,5)],7) => [7,7] => [7] => 1
([(0,6),(1,3),(1,4),(3,5),(4,5),(5,6),(6,2)],7) => [5,5] => [5] => 1
([(0,2),(0,3),(2,5),(2,6),(3,5),(3,6),(4,1),(6,4)],7) => [4,4] => [4] => 2
([(0,3),(0,5),(3,6),(4,2),(5,1),(5,6),(6,4)],7) => [5,4] => [4] => 2
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => [4,2] => [2] => 2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6),(6,2)],7) => [6,6] => [6] => 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(3,2),(5,3),(6,3)],7) => [10,10] => [10] => 2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(3,2),(4,3),(5,3),(6,2)],7) => [8,8] => [8] => 2
([(0,2),(0,6),(1,5),(1,6),(2,5),(5,3),(5,4),(6,3),(6,4)],7) => [10,6] => [6] => 2
([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(5,3),(6,3),(6,4)],7) => [11,7,3] => [7,3] => 1
([(0,4),(0,5),(1,3),(1,5),(3,6),(4,6),(5,6),(6,2)],7) => [12,4] => [4] => 2
([(0,5),(0,6),(1,4),(1,5),(3,6),(4,3),(6,2)],7) => [10,7] => [7] => 1
([(0,2),(0,6),(1,5),(1,6),(2,3),(3,5),(5,4),(6,4)],7) => [6,4,3] => [4,3] => 2
([(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,2),(6,1)],7) => [3,3,3] => [3,3] => 1
([(0,5),(0,6),(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => [8,8] => [8] => 2
([(0,2),(0,5),(2,6),(3,1),(4,3),(4,6),(5,4)],7) => [9,3] => [3] => 1
([(0,2),(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,3)],7) => [8,3] => [3] => 1
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7) => [2,2] => [2] => 2
([(0,2),(0,3),(1,4),(1,5),(2,6),(3,6),(6,4),(6,5)],7) => [10,10] => [10] => 2
([(0,3),(1,5),(1,6),(3,5),(3,6),(5,4),(6,2),(6,4)],7) => [6,3,3,3] => [3,3,3] => 1
([(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => [6,6] => [6] => 2
([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => [6,6,3] => [6,3] => 2
([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7) => [6,5,3] => [5,3] => 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => [5,4] => [4] => 2
([(0,4),(0,5),(2,6),(3,2),(4,3),(5,1),(5,6)],7) => [6,5,3] => [5,3] => 1
([(0,2),(0,4),(1,5),(2,5),(2,6),(3,1),(4,3),(4,6)],7) => [6,4,3] => [4,3] => 2
([(0,3),(1,5),(1,6),(2,6),(3,2),(3,5),(5,4),(6,4)],7) => [8,3] => [3] => 1
([(0,5),(0,6),(1,4),(3,6),(4,3),(4,5),(6,2)],7) => [7,4,4] => [4,4] => 2
([(0,3),(0,6),(1,4),(2,6),(3,5),(4,2),(6,5)],7) => [6,5,3] => [5,3] => 1
([(0,5),(2,6),(3,1),(4,3),(4,6),(5,2),(5,4)],7) => [5,4] => [4] => 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => [3,2] => [2] => 2
([(0,2),(1,5),(1,6),(2,3),(3,5),(3,6),(5,4),(6,4)],7) => [4,4] => [4] => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7) => [2,2] => [2] => 2
([(1,5),(2,6),(3,6),(5,2),(5,3),(6,4)],7) => [7,7] => [7] => 1
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7) => [2,2] => [2] => 2
([(0,6),(1,4),(3,5),(4,3),(4,6),(6,2),(6,5)],7) => [11,3,3] => [3,3] => 1
([(0,5),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7) => [5,5] => [5] => 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7) => [3,3] => [3] => 1
([(0,6),(1,5),(2,6),(3,6),(5,2),(5,3),(6,4)],7) => [5,5] => [5] => 1
([(1,5),(4,6),(5,4),(6,2),(6,3)],7) => [7,7] => [7] => 1
([(0,5),(4,6),(5,4),(6,1),(6,2),(6,3)],7) => [3,3] => [3] => 1
([(0,5),(1,4),(4,6),(5,6),(6,2),(6,3)],7) => [4,4,2,2] => [4,2,2] => 2
([(0,3),(1,2),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => [4,4,2,2] => [4,2,2] => 2
([(0,6),(4,5),(5,2),(5,3),(6,1),(6,4)],7) => [5,5] => [5] => 1
([(0,4),(1,5),(2,6),(4,6),(5,2),(6,3)],7) => [5,5] => [5] => 1
([(0,6),(1,5),(2,6),(5,2),(6,3),(6,4)],7) => [4,4] => [4] => 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(5,6),(6,4)],7) => [15,5,5] => [5,5] => 1
([(0,6),(1,3),(1,6),(3,4),(3,5),(5,2),(6,4),(6,5)],7) => [6,3,3,3] => [3,3,3] => 1
([(0,6),(1,3),(1,6),(2,4),(3,2),(3,5),(5,4),(6,5)],7) => [8,4,2] => [4,2] => 2
([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7) => [6,2,2] => [2,2] => 2
([(0,6),(1,4),(1,6),(2,5),(3,5),(4,3),(6,2)],7) => [14,2] => [2] => 2
([(0,6),(1,3),(1,6),(2,4),(3,5),(5,4),(6,2),(6,5)],7) => [10,2] => [2] => 2
([(0,6),(1,3),(1,6),(3,5),(4,2),(4,5),(6,4)],7) => [11,5] => [5] => 1
([(0,4),(0,5),(2,6),(3,1),(3,6),(4,2),(5,3)],7) => [14,2] => [2] => 2
([(0,3),(0,4),(1,5),(2,5),(2,6),(3,2),(4,1),(4,6)],7) => [13,2] => [2] => 2
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7) => [3,2] => [2] => 2
([(0,6),(1,4),(1,6),(2,5),(3,2),(4,3),(6,5)],7) => [6,5,3] => [5,3] => 1
([(0,6),(1,3),(1,6),(2,5),(3,5),(4,2),(6,4)],7) => [5,4] => [4] => 2
([(0,5),(3,6),(4,2),(4,6),(5,1),(5,3),(5,4)],7) => [15,5,5] => [5,5] => 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3)],7) => [12,4] => [4] => 2
([(0,5),(2,6),(3,6),(4,1),(4,6),(5,2),(5,3),(5,4)],7) => [10,4,4] => [4,4] => 2
([(0,5),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4)],7) => [10,4,4] => [4,4] => 2
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => [5,4] => [4] => 2
([(0,5),(2,6),(3,6),(4,1),(4,3),(5,2),(5,4)],7) => [4,4,3] => [4,3] => 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7) => [5,5] => [5] => 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7) => [4,4,3] => [4,3] => 2
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1),(3,2)],7) => [6,6] => [6] => 2
([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4)],7) => [8,3,2] => [3,2] => 1
([(0,3),(0,5),(1,5),(1,6),(2,4),(3,6),(5,2),(6,4)],7) => [13,2] => [2] => 2
([(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,2),(4,3)],7) => [5,3] => [3] => 1
([(0,5),(0,6),(1,3),(1,6),(3,5),(4,2),(5,4)],7) => [9,5] => [5] => 1
([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7) => [5,3] => [3] => 1
([(0,3),(0,6),(1,4),(1,6),(2,5),(3,4),(4,2),(6,5)],7) => [8,3] => [3] => 1
([(0,5),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4)],7) => [12,4] => [4] => 2
([(0,4),(1,3),(1,6),(4,6),(5,2),(6,5)],7) => [10,5] => [5] => 1
([(0,3),(1,4),(1,6),(2,5),(3,4),(3,6),(4,2),(6,5)],7) => [3,3,3] => [3,3] => 1
([(0,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2)],7) => [10,10] => [10] => 2
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7) => [2,2] => [2] => 2
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7) => [3,2] => [2] => 2
([(0,5),(0,6),(1,3),(2,6),(3,4),(4,2),(4,5)],7) => [9,5] => [5] => 1
([(0,5),(2,6),(3,2),(4,1),(4,6),(5,3),(5,4)],7) => [5,4] => [4] => 2
([(0,5),(0,6),(1,4),(2,6),(3,2),(4,3),(4,5)],7) => [10,7] => [7] => 1
([(0,3),(1,4),(1,6),(2,5),(3,6),(4,5),(6,2)],7) => [9,3] => [3] => 1
([(0,6),(4,3),(5,1),(5,2),(6,4),(6,5)],7) => [10,10] => [10] => 2
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => [5,5] => [5] => 1
([(0,5),(4,3),(5,6),(6,1),(6,2),(6,4)],7) => [4,4,4] => [4,4] => 2
([(0,3),(1,4),(2,6),(3,5),(4,2),(4,5),(5,6)],7) => [14,2] => [2] => 2
([(0,6),(1,3),(3,6),(5,2),(6,4),(6,5)],7) => [3,3,3] => [3,3] => 1
([(0,6),(1,4),(2,5),(3,5),(4,3),(4,6),(6,2)],7) => [4,3,3] => [3,3] => 1
([(0,5),(3,2),(4,1),(5,6),(6,3),(6,4)],7) => [4,2] => [2] => 2
([(0,6),(1,4),(3,2),(4,5),(5,3),(5,6)],7) => [10,5] => [5] => 1
([(0,6),(1,4),(2,5),(3,2),(3,6),(4,3),(6,5)],7) => [5,4] => [4] => 2
([(0,6),(3,4),(4,1),(5,2),(6,3),(6,5)],7) => [5,5] => [5] => 1
([(0,6),(1,4),(2,5),(3,2),(4,3),(4,6),(6,5)],7) => [9,3] => [3] => 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7) => [4,4,4] => [4,4] => 2
([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7) => [6,6,3] => [6,3] => 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => [4,2] => [2] => 2
([(0,4),(1,3),(3,6),(4,6),(5,2),(6,5)],7) => [4,2] => [2] => 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(5,4)],7) => [10,10] => [10] => 2
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8) => [12,4] => [4] => 2
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => [3,2] => [2] => 2
([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => [8,4,2] => [4,2] => 2
([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => [10,2] => [2] => 2
([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10) => [10,2] => [2] => 2
([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10) => [10,2] => [2] => 2
([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11) => [10,2] => [2] => 2
([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11) => [10,2] => [2] => 2
search for individual values
searching the database for the individual values of this statistic
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Map
first row removal
Description
Removes the first entry of an integer partition
Map
promotion cycle type
Description
The cycle type of promotion on the linear extensions of a poset.