Identifier
-
Mp00179:
Integer partitions
—to skew partition⟶
Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000533: Integer partitions ⟶ ℤ
Values
[1] => [[1],[]] => ([],1) => [1] => 1
[2] => [[2],[]] => ([(0,1)],2) => [2] => 1
[1,1] => [[1,1],[]] => ([(0,1)],2) => [2] => 1
[3] => [[3],[]] => ([(0,2),(2,1)],3) => [3] => 1
[2,1] => [[2,1],[]] => ([(0,1),(0,2)],3) => [2,1] => 2
[1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => [3] => 1
[4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => [4] => 1
[3,1] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3,1] => 2
[2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => [3,1] => 2
[2,1,1] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3,1] => 2
[1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => [4] => 1
[5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [5] => 1
[4,1] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4,1] => 2
[3,2] => [[3,2],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 2
[3,1,1] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => [3,2] => 2
[2,2,1] => [[2,2,1],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 2
[2,1,1,1] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4,1] => 2
[1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [5] => 1
[6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [6] => 1
[5,1] => [[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5,1] => 2
[4,2] => [[4,2],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [4,2] => 2
[4,1,1] => [[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [4,2] => 2
[3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => 2
[3,2,1] => [[3,2,1],[]] => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => [3,2,1] => 3
[3,1,1,1] => [[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [4,2] => 2
[2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => 2
[2,2,1,1] => [[2,2,1,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [4,2] => 2
[2,1,1,1,1] => [[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5,1] => 2
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [6] => 1
[7] => [[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [7] => 1
[6,1] => [[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6,1] => 2
[5,2] => [[5,2],[]] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7) => [5,2] => 2
[5,1,1] => [[5,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => [5,2] => 2
[4,3] => [[4,3],[]] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7) => [4,3] => 2
[4,2,1] => [[4,2,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7) => [4,2,1] => 3
[4,1,1,1] => [[4,1,1,1],[]] => ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7) => [4,3] => 2
[3,3,1] => [[3,3,1],[]] => ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7) => [4,2,1] => 3
[3,2,2] => [[3,2,2],[]] => ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7) => [4,2,1] => 3
[3,2,1,1] => [[3,2,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7) => [4,2,1] => 3
[3,1,1,1,1] => [[3,1,1,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => [5,2] => 2
[2,2,2,1] => [[2,2,2,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7) => [4,3] => 2
[2,2,1,1,1] => [[2,2,1,1,1],[]] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7) => [5,2] => 2
[2,1,1,1,1,1] => [[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6,1] => 2
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [7] => 1
[8] => [[8],[]] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => [8] => 1
[7,1] => [[7,1],[]] => ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8) => [7,1] => 2
[6,2] => [[6,2],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8) => [6,2] => 2
[6,1,1] => [[6,1,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8) => [6,2] => 2
[5,3] => [[5,3],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8) => [5,3] => 2
[5,2,1] => [[5,2,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8) => [5,2,1] => 3
[5,1,1,1] => [[5,1,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8) => [5,3] => 2
[4,4] => [[4,4],[]] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => [5,3] => 2
[4,3,1] => [[4,3,1],[]] => ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8) => [4,3,1] => 3
[4,2,2] => [[4,2,2],[]] => ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8) => [4,3,1] => 3
[4,2,1,1] => [[4,2,1,1],[]] => ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8) => [4,3,1] => 3
[4,1,1,1,1] => [[4,1,1,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8) => [5,3] => 2
[3,3,2] => [[3,3,2],[]] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8) => [4,3,1] => 3
[3,3,1,1] => [[3,3,1,1],[]] => ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8) => [4,3,1] => 3
[3,2,2,1] => [[3,2,2,1],[]] => ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8) => [4,3,1] => 3
[3,2,1,1,1] => [[3,2,1,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8) => [5,2,1] => 3
[3,1,1,1,1,1] => [[3,1,1,1,1,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8) => [6,2] => 2
[2,2,2,2] => [[2,2,2,2],[]] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => [5,3] => 2
[2,2,2,1,1] => [[2,2,2,1,1],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8) => [5,3] => 2
[2,2,1,1,1,1] => [[2,2,1,1,1,1],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8) => [6,2] => 2
[2,1,1,1,1,1,1] => [[2,1,1,1,1,1,1],[]] => ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8) => [7,1] => 2
[1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1],[]] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => [8] => 1
[9] => [[9],[]] => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => [9] => 1
[8,1] => [[8,1],[]] => ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9) => [8,1] => 2
[7,2] => [[7,2],[]] => ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(6,1),(7,5),(7,8)],9) => [7,2] => 2
[7,1,1] => [[7,1,1],[]] => ([(0,7),(0,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,1)],9) => [7,2] => 2
[6,3] => [[6,3],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9) => [6,3] => 2
[6,2,1] => [[6,2,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9) => [6,2,1] => 3
[6,1,1,1] => [[6,1,1,1],[]] => ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9) => [6,3] => 2
[5,4] => [[5,4],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9) => [5,4] => 2
[5,3,1] => [[5,3,1],[]] => ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9) => [5,3,1] => 3
[5,2,2] => [[5,2,2],[]] => ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9) => [5,3,1] => 3
[5,2,1,1] => [[5,2,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9) => [5,3,1] => 3
[5,1,1,1,1] => [[5,1,1,1,1],[]] => ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(8,4)],9) => [5,4] => 2
[4,4,1] => [[4,4,1],[]] => ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9) => [5,3,1] => 3
[4,3,2] => [[4,3,2],[]] => ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9) => [4,3,2] => 3
[4,3,1,1] => [[4,3,1,1],[]] => ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9) => [4,3,2] => 3
[4,2,2,1] => [[4,2,2,1],[]] => ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9) => [4,3,2] => 3
[4,2,1,1,1] => [[4,2,1,1,1],[]] => ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9) => [5,3,1] => 3
[4,1,1,1,1,1] => [[4,1,1,1,1,1],[]] => ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9) => [6,3] => 2
[3,3,3] => [[3,3,3],[]] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9) => [5,3,1] => 3
[3,3,2,1] => [[3,3,2,1],[]] => ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9) => [4,3,2] => 3
[3,3,1,1,1] => [[3,3,1,1,1],[]] => ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9) => [5,3,1] => 3
[3,2,2,2] => [[3,2,2,2],[]] => ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9) => [5,3,1] => 3
[3,2,2,1,1] => [[3,2,2,1,1],[]] => ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9) => [5,3,1] => 3
[3,2,1,1,1,1] => [[3,2,1,1,1,1],[]] => ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9) => [6,2,1] => 3
[3,1,1,1,1,1,1] => [[3,1,1,1,1,1,1],[]] => ([(0,7),(0,8),(3,4),(4,6),(5,3),(6,2),(7,5),(8,1)],9) => [7,2] => 2
[2,2,2,2,1] => [[2,2,2,2,1],[]] => ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9) => [5,4] => 2
[2,2,2,1,1,1] => [[2,2,2,1,1,1],[]] => ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9) => [6,3] => 2
[2,2,1,1,1,1,1] => [[2,2,1,1,1,1,1],[]] => ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(6,1),(7,5),(7,8)],9) => [7,2] => 2
[2,1,1,1,1,1,1,1] => [[2,1,1,1,1,1,1,1],[]] => ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9) => [8,1] => 2
[1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1],[]] => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9) => [9] => 1
[10] => [[10],[]] => ([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => [10] => 1
[9,1] => [[9,1],[]] => ([(0,2),(0,9),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10) => [9,1] => 2
[8,2] => [[8,2],[]] => ([(0,2),(0,8),(2,9),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6),(8,9)],10) => [8,2] => 2
[8,1,1] => [[8,1,1],[]] => ([(0,8),(0,9),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6),(9,1)],10) => [8,2] => 2
[7,3] => [[7,3],[]] => ([(0,2),(0,7),(2,8),(3,4),(4,6),(5,3),(5,9),(6,1),(7,5),(7,8),(8,9)],10) => [7,3] => 2
>>> Load all 145 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The minimum of the number of parts and the size of the first part of an integer partition.
This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
This is also an upper bound on the maximal number of non-attacking rooks that can be placed on the Ferrers board.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.
This is the partition $(c_1 - c_0, c_2 - c_1, c_3 - c_2, \ldots)$, where $c_k$ is the maximum cardinality of a union of $k$ chains of the poset. Equivalently, this is the conjugate of the partition $(a_1 - a_0, a_2 - a_1, a_3 - a_2, \ldots)$, where $a_k$ is the maximum cardinality of a union of $k$ antichains of the poset.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!