Values
[1] => [1] => 0
[2] => [1,1] => 1
[1,1] => [2] => 0
[3] => [1,1,1] => 0
[2,1] => [2,1] => 1
[1,1,1] => [3] => 0
[4] => [1,1,1,1] => 1
[3,1] => [2,1,1] => 1
[2,2] => [2,2] => 1
[2,1,1] => [3,1] => 1
[1,1,1,1] => [4] => 0
[5] => [1,1,1,1,1] => 0
[4,1] => [2,1,1,1] => 2
[3,2] => [2,2,1] => 2
[3,1,1] => [3,1,1] => 2
[2,2,1] => [3,2] => 2
[2,1,1,1] => [4,1] => 1
[1,1,1,1,1] => [5] => 0
[6] => [1,1,1,1,1,1] => 1
[5,1] => [2,1,1,1,1] => 2
[4,2] => [2,2,1,1] => 4
[4,1,1] => [3,1,1,1] => 4
[3,3] => [2,2,2] => 2
[3,2,1] => [3,2,1] => 6
[3,1,1,1] => [4,1,1] => 3
[2,2,2] => [3,3] => 2
[2,2,1,1] => [4,2] => 3
[2,1,1,1,1] => [5,1] => 1
[1,1,1,1,1,1] => [6] => 0
[7] => [1,1,1,1,1,1,1] => 0
[6,1] => [2,1,1,1,1,1] => 3
[5,2] => [2,2,1,1,1] => 6
[5,1,1] => [3,1,1,1,1] => 6
[4,3] => [2,2,2,1] => 6
[4,2,1] => [3,2,1,1] => 14
[4,1,1,1] => [4,1,1,1] => 7
[3,3,1] => [3,2,2] => 8
[3,2,2] => [3,3,1] => 8
[3,2,1,1] => [4,2,1] => 12
[3,1,1,1,1] => [5,1,1] => 4
[2,2,2,1] => [4,3] => 5
[2,2,1,1,1] => [5,2] => 4
[2,1,1,1,1,1] => [6,1] => 1
[1,1,1,1,1,1,1] => [7] => 0
[8] => [1,1,1,1,1,1,1,1] => 1
[7,1] => [2,1,1,1,1,1,1] => 3
[6,2] => [2,2,1,1,1,1] => 9
[6,1,1] => [3,1,1,1,1,1] => 9
[5,3] => [2,2,2,1,1] => 12
[5,2,1] => [3,2,1,1,1] => 26
[5,1,1,1] => [4,1,1,1,1] => 13
[4,4] => [2,2,2,2] => 6
[4,3,1] => [3,2,2,1] => 28
[4,2,2] => [3,3,1,1] => 22
[4,2,1,1] => [4,2,1,1] => 33
[4,1,1,1,1] => [5,1,1,1] => 11
[3,3,2] => [3,3,2] => 16
[3,3,1,1] => [4,2,2] => 20
[3,2,2,1] => [4,3,1] => 25
[3,2,1,1,1] => [5,2,1] => 20
[3,1,1,1,1,1] => [6,1,1] => 5
[2,2,2,2] => [4,4] => 5
[2,2,2,1,1] => [5,3] => 9
[2,2,1,1,1,1] => [6,2] => 5
[2,1,1,1,1,1,1] => [7,1] => 1
[1,1,1,1,1,1,1,1] => [8] => 0
[9] => [1,1,1,1,1,1,1,1,1] => 0
[8,1] => [2,1,1,1,1,1,1,1] => 4
[7,2] => [2,2,1,1,1,1,1] => 12
[7,1,1] => [3,1,1,1,1,1,1] => 12
[6,3] => [2,2,2,1,1,1] => 21
[6,2,1] => [3,2,1,1,1,1] => 44
[6,1,1,1] => [4,1,1,1,1,1] => 22
[5,4] => [2,2,2,2,1] => 18
[5,3,1] => [3,2,2,1,1] => 66
[5,2,2] => [3,3,1,1,1] => 48
[5,2,1,1] => [4,2,1,1,1] => 72
[5,1,1,1,1] => [5,1,1,1,1] => 24
[4,4,1] => [3,2,2,2] => 34
[4,3,2] => [3,3,2,1] => 66
[4,3,1,1] => [4,2,2,1] => 81
[4,2,2,1] => [4,3,1,1] => 80
[4,2,1,1,1] => [5,2,1,1] => 64
[4,1,1,1,1,1] => [6,1,1,1] => 16
[3,3,3] => [3,3,3] => 16
[3,3,2,1] => [4,3,2] => 61
[3,3,1,1,1] => [5,2,2] => 40
[3,2,2,2] => [4,4,1] => 30
[3,2,2,1,1] => [5,3,1] => 54
[3,2,1,1,1,1] => [6,2,1] => 30
[3,1,1,1,1,1,1] => [7,1,1] => 6
[2,2,2,2,1] => [5,4] => 14
[2,2,2,1,1,1] => [6,3] => 14
[2,2,1,1,1,1,1] => [7,2] => 6
[2,1,1,1,1,1,1,1] => [8,1] => 1
[1,1,1,1,1,1,1,1,1] => [9] => 0
[10] => [1,1,1,1,1,1,1,1,1,1] => 1
[9,1] => [2,1,1,1,1,1,1,1,1] => 4
[8,2] => [2,2,1,1,1,1,1,1] => 16
[8,1,1] => [3,1,1,1,1,1,1,1] => 16
[7,3] => [2,2,2,1,1,1,1] => 33
>>> Load all 271 entries. <<<
[7,2,1] => [3,2,1,1,1,1,1] => 68
[7,1,1,1] => [4,1,1,1,1,1,1] => 34
[6,4] => [2,2,2,2,1,1] => 39
[6,3,1] => [3,2,2,1,1,1] => 131
[6,2,2] => [3,3,1,1,1,1] => 92
[6,2,1,1] => [4,2,1,1,1,1] => 138
[6,1,1,1,1] => [5,1,1,1,1,1] => 46
[5,5] => [2,2,2,2,2] => 18
[5,4,1] => [3,2,2,2,1] => 118
[5,3,2] => [3,3,2,1,1] => 180
[5,3,1,1] => [4,2,2,1,1] => 219
[5,2,2,1] => [4,3,1,1,1] => 200
[5,2,1,1,1] => [5,2,1,1,1] => 160
[5,1,1,1,1,1] => [6,1,1,1,1] => 40
[4,4,2] => [3,3,2,2] => 100
[4,4,1,1] => [4,2,2,2] => 115
[4,3,3] => [3,3,3,1] => 82
[4,3,2,1] => [4,3,2,1] => 288
[4,3,1,1,1] => [5,2,2,1] => 185
[4,2,2,2] => [4,4,1,1] => 110
[4,2,2,1,1] => [5,3,1,1] => 198
[4,2,1,1,1,1] => [6,2,1,1] => 110
[4,1,1,1,1,1,1] => [7,1,1,1] => 22
[3,3,3,1] => [4,3,3] => 77
[3,3,2,2] => [4,4,2] => 91
[3,3,2,1,1] => [5,3,2] => 155
[3,3,1,1,1,1] => [6,2,2] => 70
[3,2,2,2,1] => [5,4,1] => 98
[3,2,2,1,1,1] => [6,3,1] => 98
[3,2,1,1,1,1,1] => [7,2,1] => 42
[3,1,1,1,1,1,1,1] => [8,1,1] => 7
[2,2,2,2,2] => [5,5] => 14
[2,2,2,2,1,1] => [6,4] => 28
[2,2,2,1,1,1,1] => [7,3] => 20
[2,2,1,1,1,1,1,1] => [8,2] => 7
[2,1,1,1,1,1,1,1,1] => [9,1] => 1
[1,1,1,1,1,1,1,1,1,1] => [10] => 0
[11] => [1,1,1,1,1,1,1,1,1,1,1] => 0
[10,1] => [2,1,1,1,1,1,1,1,1,1] => 5
[9,2] => [2,2,1,1,1,1,1,1,1] => 20
[9,1,1] => [3,1,1,1,1,1,1,1,1] => 20
[8,3] => [2,2,2,1,1,1,1,1] => 49
[8,2,1] => [3,2,1,1,1,1,1,1] => 100
[8,1,1,1] => [4,1,1,1,1,1,1,1] => 50
[7,4] => [2,2,2,2,1,1,1] => 72
[7,3,1] => [3,2,2,1,1,1,1] => 232
[7,2,2] => [3,3,1,1,1,1,1] => 160
[7,2,1,1] => [4,2,1,1,1,1,1] => 240
[7,1,1,1,1] => [5,1,1,1,1,1,1] => 80
[6,5] => [2,2,2,2,2,1] => 57
[6,4,1] => [3,2,2,2,1,1] => 288
[6,3,2] => [3,3,2,1,1,1] => 403
[6,3,1,1] => [4,2,2,1,1,1] => 488
[6,2,2,1] => [4,3,1,1,1,1] => 430
[6,2,1,1,1] => [5,2,1,1,1,1] => 344
[6,1,1,1,1,1] => [6,1,1,1,1,1] => 86
[5,5,1] => [3,2,2,2,2] => 136
[5,4,2] => [3,3,2,2,1] => 398
[5,4,1,1] => [4,2,2,2,1] => 452
[5,3,3] => [3,3,3,1,1] => 262
[5,3,2,1] => [4,3,2,1,1] => 887
[5,3,1,1,1] => [5,2,2,1,1] => 564
[5,2,2,2] => [4,4,1,1,1] => 310
[5,2,2,1,1] => [5,3,1,1,1] => 558
[5,2,1,1,1,1] => [6,2,1,1,1] => 310
[5,1,1,1,1,1,1] => [7,1,1,1,1] => 62
[4,4,3] => [3,3,3,2] => 182
[4,4,2,1] => [4,3,2,2] => 503
[4,4,1,1,1] => [5,2,2,2] => 300
[4,3,3,1] => [4,3,3,1] => 447
[4,3,2,2] => [4,4,2,1] => 489
[4,3,2,1,1] => [5,3,2,1] => 826
[4,3,1,1,1,1] => [6,2,2,1] => 365
[4,2,2,2,1] => [5,4,1,1] => 406
[4,2,2,1,1,1] => [6,3,1,1] => 406
[4,2,1,1,1,1,1] => [7,2,1,1] => 174
[4,1,1,1,1,1,1,1] => [8,1,1,1] => 29
[3,3,3,2] => [4,4,3] => 168
[3,3,3,1,1] => [5,3,3] => 232
[3,3,2,2,1] => [5,4,2] => 344
[3,3,2,1,1,1] => [6,3,2] => 323
[3,3,1,1,1,1,1] => [7,2,2] => 112
[3,2,2,2,2] => [5,5,1] => 112
[3,2,2,2,1,1] => [6,4,1] => 224
[3,2,2,1,1,1,1] => [7,3,1] => 160
[3,2,1,1,1,1,1,1] => [8,2,1] => 56
[3,1,1,1,1,1,1,1,1] => [9,1,1] => 8
[2,2,2,2,2,1] => [6,5] => 42
[2,2,2,2,1,1,1] => [7,4] => 48
[2,2,2,1,1,1,1,1] => [8,3] => 27
[2,2,1,1,1,1,1,1,1] => [9,2] => 8
[2,1,1,1,1,1,1,1,1,1] => [10,1] => 1
[1,1,1,1,1,1,1,1,1,1,1] => [11] => 0
[12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 1
[11,1] => [2,1,1,1,1,1,1,1,1,1,1] => 5
[10,2] => [2,2,1,1,1,1,1,1,1,1] => 25
[10,1,1] => [3,1,1,1,1,1,1,1,1,1] => 25
[9,3] => [2,2,2,1,1,1,1,1,1] => 69
[9,2,1] => [3,2,1,1,1,1,1,1,1] => 140
[9,1,1,1] => [4,1,1,1,1,1,1,1,1] => 70
[8,4] => [2,2,2,2,1,1,1,1] => 121
[8,3,1] => [3,2,2,1,1,1,1,1] => 381
[8,2,2] => [3,3,1,1,1,1,1,1] => 260
[8,2,1,1] => [4,2,1,1,1,1,1,1] => 390
[8,1,1,1,1] => [5,1,1,1,1,1,1,1] => 130
[7,5] => [2,2,2,2,2,1,1] => 129
[7,4,1] => [3,2,2,2,1,1,1] => 592
[7,3,2] => [3,3,2,1,1,1,1] => 795
[7,3,1,1] => [4,2,2,1,1,1,1] => 960
[7,2,2,1] => [4,3,1,1,1,1,1] => 830
[7,2,1,1,1] => [5,2,1,1,1,1,1] => 664
[7,1,1,1,1,1] => [6,1,1,1,1,1,1] => 166
[6,6] => [2,2,2,2,2,2] => 57
[6,5,1] => [3,2,2,2,2,1] => 481
[6,4,2] => [3,3,2,2,1,1] => 1089
[6,4,1,1] => [4,2,2,2,1,1] => 1228
[6,3,3] => [3,3,3,1,1,1] => 665
[6,3,2,1] => [4,3,2,1,1,1] => 2208
[6,3,1,1,1] => [5,2,2,1,1,1] => 1396
[6,2,2,2] => [4,4,1,1,1,1] => 740
[6,2,2,1,1] => [5,3,1,1,1,1] => 1332
[6,2,1,1,1,1] => [6,2,1,1,1,1] => 740
[6,1,1,1,1,1,1] => [7,1,1,1,1,1] => 148
[5,5,2] => [3,3,2,2,2] => 534
[5,5,1,1] => [4,2,2,2,2] => 588
[5,4,3] => [3,3,3,2,1] => 842
[5,4,2,1] => [4,3,2,2,1] => 2240
[5,4,1,1,1] => [5,2,2,2,1] => 1316
[5,3,3,1] => [4,3,3,1,1] => 1596
[5,3,2,2] => [4,4,2,1,1] => 1686
[5,3,2,1,1] => [5,3,2,1,1] => 2835
[5,3,1,1,1,1] => [6,2,2,1,1] => 1239
[5,2,2,2,1] => [5,4,1,1,1] => 1274
[5,2,2,1,1,1] => [6,3,1,1,1] => 1274
[5,2,1,1,1,1,1] => [7,2,1,1,1] => 546
[5,1,1,1,1,1,1,1] => [8,1,1,1,1] => 91
[4,4,4] => [3,3,3,3] => 182
[4,4,3,1] => [4,3,3,2] => 1132
[4,4,2,2] => [4,4,2,2] => 992
[4,4,2,1,1] => [5,3,2,2] => 1629
[4,4,1,1,1,1] => [6,2,2,2] => 665
[4,3,3,2] => [4,4,3,1] => 1104
[4,3,3,1,1] => [5,3,3,1] => 1505
[4,3,2,2,1] => [5,4,2,1] => 2065
[4,3,2,1,1,1] => [6,3,2,1] => 1920
[4,3,1,1,1,1,1] => [7,2,2,1] => 651
[4,2,2,2,2] => [5,5,1,1] => 518
[4,2,2,2,1,1] => [6,4,1,1] => 1036
[4,2,2,1,1,1,1] => [7,3,1,1] => 740
[4,2,1,1,1,1,1,1] => [8,2,1,1] => 259
[4,1,1,1,1,1,1,1,1] => [9,1,1,1] => 37
[3,3,3,3] => [4,4,4] => 168
[3,3,3,2,1] => [5,4,3] => 744
[3,3,3,1,1,1] => [6,3,3] => 555
[3,3,2,2,2] => [5,5,2] => 456
[3,3,2,2,1,1] => [6,4,2] => 891
[3,3,2,1,1,1,1] => [7,3,2] => 595
[3,3,1,1,1,1,1,1] => [8,2,2] => 168
[3,2,2,2,2,1] => [6,5,1] => 378
[3,2,2,2,1,1,1] => [7,4,1] => 432
[3,2,2,1,1,1,1,1] => [8,3,1] => 243
[3,2,1,1,1,1,1,1,1] => [9,2,1] => 72
[3,1,1,1,1,1,1,1,1,1] => [10,1,1] => 9
[2,2,2,2,2,2] => [6,6] => 42
[2,2,2,2,2,1,1] => [7,5] => 90
[2,2,2,2,1,1,1,1] => [8,4] => 75
[2,2,2,1,1,1,1,1,1] => [9,3] => 35
[2,2,1,1,1,1,1,1,1,1] => [10,2] => 9
[2,1,1,1,1,1,1,1,1,1,1] => [11,1] => 1
[1,1,1,1,1,1,1,1,1,1,1,1] => [12] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of standard desarrangement tableaux of shape equal to the given partition.
A standard desarrangement tableau is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation).
This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also:
  • St000046The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition.: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition
  • St000500Eigenvalues of the random-to-random operator acting on the regular representation.: Eigenvalues of the random-to-random operator acting on the regular representation.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.