Identifier
Values
=>
Cc0009;cc-rep-0 Cc0009;cc-rep
{{1,2}}=>{{1,2}}=>2 {{1},{2}}=>{{1},{2}}=>1 {{1,2,3}}=>{{1,2,3}}=>3 {{1,2},{3}}=>{{1,2},{3}}=>2 {{1,3},{2}}=>{{1},{2,3}}=>1 {{1},{2,3}}=>{{1,3},{2}}=>2 {{1},{2},{3}}=>{{1},{2},{3}}=>1 {{1,2,3,4}}=>{{1,2,3,4}}=>4 {{1,2,3},{4}}=>{{1,2,3},{4}}=>3 {{1,2,4},{3}}=>{{1,2},{3,4}}=>2 {{1,2},{3,4}}=>{{1,2,4},{3}}=>3 {{1,2},{3},{4}}=>{{1,2},{3},{4}}=>2 {{1,3,4},{2}}=>{{1,4},{2,3}}=>2 {{1,3},{2,4}}=>{{1},{2,3,4}}=>1 {{1,3},{2},{4}}=>{{1},{2,3},{4}}=>1 {{1,4},{2,3}}=>{{1,3},{2,4}}=>2 {{1},{2,3,4}}=>{{1,3,4},{2}}=>3 {{1},{2,3},{4}}=>{{1,3},{2},{4}}=>2 {{1,4},{2},{3}}=>{{1},{2},{3,4}}=>1 {{1},{2,4},{3}}=>{{1},{2,4},{3}}=>1 {{1},{2},{3,4}}=>{{1,4},{2},{3}}=>2 {{1},{2},{3},{4}}=>{{1},{2},{3},{4}}=>1 {{1,2,3,4,5}}=>{{1,2,3,4,5}}=>5 {{1,2,3,4},{5}}=>{{1,2,3,4},{5}}=>4 {{1,2,3,5},{4}}=>{{1,2,3},{4,5}}=>3 {{1,2,3},{4,5}}=>{{1,2,3,5},{4}}=>4 {{1,2,3},{4},{5}}=>{{1,2,3},{4},{5}}=>3 {{1,2,4,5},{3}}=>{{1,2,5},{3,4}}=>3 {{1,2,4},{3,5}}=>{{1,2},{3,4,5}}=>2 {{1,2,4},{3},{5}}=>{{1,2},{3,4},{5}}=>2 {{1,2,5},{3,4}}=>{{1,2,4},{3,5}}=>3 {{1,2},{3,4,5}}=>{{1,2,4,5},{3}}=>4 {{1,2},{3,4},{5}}=>{{1,2,4},{3},{5}}=>3 {{1,2,5},{3},{4}}=>{{1,2},{3},{4,5}}=>2 {{1,2},{3,5},{4}}=>{{1,2},{3,5},{4}}=>2 {{1,2},{3},{4,5}}=>{{1,2,5},{3},{4}}=>3 {{1,2},{3},{4},{5}}=>{{1,2},{3},{4},{5}}=>2 {{1,3,4,5},{2}}=>{{1,4,5},{2,3}}=>3 {{1,3,4},{2,5}}=>{{1,4},{2,3,5}}=>2 {{1,3,4},{2},{5}}=>{{1,4},{2,3},{5}}=>2 {{1,3,5},{2,4}}=>{{1},{2,3,4,5}}=>1 {{1,3},{2,4,5}}=>{{1,5},{2,3,4}}=>2 {{1,3},{2,4},{5}}=>{{1},{2,3,4},{5}}=>1 {{1,3,5},{2},{4}}=>{{1},{2,3,5},{4}}=>1 {{1,3},{2,5},{4}}=>{{1},{2,3},{4,5}}=>1 {{1,3},{2},{4,5}}=>{{1,5},{2,3},{4}}=>2 {{1,3},{2},{4},{5}}=>{{1},{2,3},{4},{5}}=>1 {{1,4,5},{2,3}}=>{{1,3,5},{2,4}}=>3 {{1,4},{2,3,5}}=>{{1,3},{2,4,5}}=>2 {{1,4},{2,3},{5}}=>{{1,3},{2,4},{5}}=>2 {{1,5},{2,3,4}}=>{{1,3,4},{2,5}}=>3 {{1},{2,3,4,5}}=>{{1,3,4,5},{2}}=>4 {{1},{2,3,4},{5}}=>{{1,3,4},{2},{5}}=>3 {{1,5},{2,3},{4}}=>{{1,3},{2},{4,5}}=>2 {{1},{2,3,5},{4}}=>{{1,3},{2,5},{4}}=>2 {{1},{2,3},{4,5}}=>{{1,3,5},{2},{4}}=>3 {{1},{2,3},{4},{5}}=>{{1,3},{2},{4},{5}}=>2 {{1,4,5},{2},{3}}=>{{1,5},{2},{3,4}}=>2 {{1,4},{2,5},{3}}=>{{1},{2},{3,4,5}}=>1 {{1,4},{2},{3,5}}=>{{1},{2,5},{3,4}}=>1 {{1,4},{2},{3},{5}}=>{{1},{2},{3,4},{5}}=>1 {{1,5},{2,4},{3}}=>{{1},{2,4},{3,5}}=>1 {{1},{2,4,5},{3}}=>{{1,5},{2,4},{3}}=>2 {{1},{2,4},{3,5}}=>{{1},{2,4,5},{3}}=>1 {{1},{2,4},{3},{5}}=>{{1},{2,4},{3},{5}}=>1 {{1,5},{2},{3,4}}=>{{1,4},{2},{3,5}}=>2 {{1},{2,5},{3,4}}=>{{1,4},{2,5},{3}}=>2 {{1},{2},{3,4,5}}=>{{1,4,5},{2},{3}}=>3 {{1},{2},{3,4},{5}}=>{{1,4},{2},{3},{5}}=>2 {{1,5},{2},{3},{4}}=>{{1},{2},{3},{4,5}}=>1 {{1},{2,5},{3},{4}}=>{{1},{2},{3,5},{4}}=>1 {{1},{2},{3,5},{4}}=>{{1},{2,5},{3},{4}}=>1 {{1},{2},{3},{4,5}}=>{{1,5},{2},{3},{4}}=>2 {{1},{2},{3},{4},{5}}=>{{1},{2},{3},{4},{5}}=>1 {{1,2,3,4,5,6}}=>{{1,2,3,4,5,6}}=>6 {{1,2,3,4,5},{6}}=>{{1,2,3,4,5},{6}}=>5 {{1,2,3,4,6},{5}}=>{{1,2,3,4},{5,6}}=>4 {{1,2,3,4},{5,6}}=>{{1,2,3,4,6},{5}}=>5 {{1,2,3,4},{5},{6}}=>{{1,2,3,4},{5},{6}}=>4 {{1,2,3,5,6},{4}}=>{{1,2,3,6},{4,5}}=>4 {{1,2,3,5},{4,6}}=>{{1,2,3},{4,5,6}}=>3 {{1,2,3,5},{4},{6}}=>{{1,2,3},{4,5},{6}}=>3 {{1,2,3,6},{4,5}}=>{{1,2,3,5},{4,6}}=>4 {{1,2,3},{4,5,6}}=>{{1,2,3,5,6},{4}}=>5 {{1,2,3},{4,5},{6}}=>{{1,2,3,5},{4},{6}}=>4 {{1,2,3,6},{4},{5}}=>{{1,2,3},{4},{5,6}}=>3 {{1,2,3},{4,6},{5}}=>{{1,2,3},{4,6},{5}}=>3 {{1,2,3},{4},{5,6}}=>{{1,2,3,6},{4},{5}}=>4 {{1,2,3},{4},{5},{6}}=>{{1,2,3},{4},{5},{6}}=>3 {{1,2,4,5,6},{3}}=>{{1,2,5,6},{3,4}}=>4 {{1,2,4,5},{3,6}}=>{{1,2,5},{3,4,6}}=>3 {{1,2,4,5},{3},{6}}=>{{1,2,5},{3,4},{6}}=>3 {{1,2,4,6},{3,5}}=>{{1,2},{3,4,5,6}}=>2 {{1,2,4},{3,5,6}}=>{{1,2,6},{3,4,5}}=>3 {{1,2,4},{3,5},{6}}=>{{1,2},{3,4,5},{6}}=>2 {{1,2,4,6},{3},{5}}=>{{1,2},{3,4,6},{5}}=>2 {{1,2,4},{3,6},{5}}=>{{1,2},{3,4},{5,6}}=>2 {{1,2,4},{3},{5,6}}=>{{1,2,6},{3,4},{5}}=>3 {{1,2,4},{3},{5},{6}}=>{{1,2},{3,4},{5},{6}}=>2 {{1,2,5,6},{3,4}}=>{{1,2,4,6},{3,5}}=>4 {{1,2,5},{3,4,6}}=>{{1,2,4},{3,5,6}}=>3 {{1,2,5},{3,4},{6}}=>{{1,2,4},{3,5},{6}}=>3 {{1,2,6},{3,4,5}}=>{{1,2,4,5},{3,6}}=>4 {{1,2},{3,4,5,6}}=>{{1,2,4,5,6},{3}}=>5 {{1,2},{3,4,5},{6}}=>{{1,2,4,5},{3},{6}}=>4 {{1,2,6},{3,4},{5}}=>{{1,2,4},{3},{5,6}}=>3 {{1,2},{3,4,6},{5}}=>{{1,2,4},{3,6},{5}}=>3 {{1,2},{3,4},{5,6}}=>{{1,2,4,6},{3},{5}}=>4 {{1,2},{3,4},{5},{6}}=>{{1,2,4},{3},{5},{6}}=>3 {{1,2,5,6},{3},{4}}=>{{1,2,6},{3},{4,5}}=>3 {{1,2,5},{3,6},{4}}=>{{1,2},{3},{4,5,6}}=>2 {{1,2,5},{3},{4,6}}=>{{1,2},{3,6},{4,5}}=>2 {{1,2,5},{3},{4},{6}}=>{{1,2},{3},{4,5},{6}}=>2 {{1,2,6},{3,5},{4}}=>{{1,2},{3,5},{4,6}}=>2 {{1,2},{3,5,6},{4}}=>{{1,2,6},{3,5},{4}}=>3 {{1,2},{3,5},{4,6}}=>{{1,2},{3,5,6},{4}}=>2 {{1,2},{3,5},{4},{6}}=>{{1,2},{3,5},{4},{6}}=>2 {{1,2,6},{3},{4,5}}=>{{1,2,5},{3},{4,6}}=>3 {{1,2},{3,6},{4,5}}=>{{1,2,5},{3,6},{4}}=>3 {{1,2},{3},{4,5,6}}=>{{1,2,5,6},{3},{4}}=>4 {{1,2},{3},{4,5},{6}}=>{{1,2,5},{3},{4},{6}}=>3 {{1,2,6},{3},{4},{5}}=>{{1,2},{3},{4},{5,6}}=>2 {{1,2},{3,6},{4},{5}}=>{{1,2},{3},{4,6},{5}}=>2 {{1,2},{3},{4,6},{5}}=>{{1,2},{3,6},{4},{5}}=>2 {{1,2},{3},{4},{5,6}}=>{{1,2,6},{3},{4},{5}}=>3 {{1,2},{3},{4},{5},{6}}=>{{1,2},{3},{4},{5},{6}}=>2 {{1,3,4,5,6},{2}}=>{{1,4,5,6},{2,3}}=>4 {{1,3,4,5},{2,6}}=>{{1,4,5},{2,3,6}}=>3 {{1,3,4,5},{2},{6}}=>{{1,4,5},{2,3},{6}}=>3 {{1,3,4,6},{2,5}}=>{{1,4},{2,3,5,6}}=>2 {{1,3,4},{2,5,6}}=>{{1,4,6},{2,3,5}}=>3 {{1,3,4},{2,5},{6}}=>{{1,4},{2,3,5},{6}}=>2 {{1,3,4,6},{2},{5}}=>{{1,4},{2,3,6},{5}}=>2 {{1,3,4},{2,6},{5}}=>{{1,4},{2,3},{5,6}}=>2 {{1,3,4},{2},{5,6}}=>{{1,4,6},{2,3},{5}}=>3 {{1,3,4},{2},{5},{6}}=>{{1,4},{2,3},{5},{6}}=>2 {{1,3,5,6},{2,4}}=>{{1,6},{2,3,4,5}}=>2 {{1,3,5},{2,4,6}}=>{{1},{2,3,4,5,6}}=>1 {{1,3,5},{2,4},{6}}=>{{1},{2,3,4,5},{6}}=>1 {{1,3,6},{2,4,5}}=>{{1,5},{2,3,4,6}}=>2 {{1,3},{2,4,5,6}}=>{{1,5,6},{2,3,4}}=>3 {{1,3},{2,4,5},{6}}=>{{1,5},{2,3,4},{6}}=>2 {{1,3,6},{2,4},{5}}=>{{1},{2,3,4},{5,6}}=>1 {{1,3},{2,4,6},{5}}=>{{1},{2,3,4,6},{5}}=>1 {{1,3},{2,4},{5,6}}=>{{1,6},{2,3,4},{5}}=>2 {{1,3},{2,4},{5},{6}}=>{{1},{2,3,4},{5},{6}}=>1 {{1,3,5,6},{2},{4}}=>{{1,6},{2,3,5},{4}}=>2 {{1,3,5},{2,6},{4}}=>{{1},{2,3,5},{4,6}}=>1 {{1,3,5},{2},{4,6}}=>{{1},{2,3,5,6},{4}}=>1 {{1,3,5},{2},{4},{6}}=>{{1},{2,3,5},{4},{6}}=>1 {{1,3,6},{2,5},{4}}=>{{1},{2,3},{4,5,6}}=>1 {{1,3},{2,5,6},{4}}=>{{1,6},{2,3},{4,5}}=>2 {{1,3},{2,5},{4,6}}=>{{1},{2,3,6},{4,5}}=>1 {{1,3},{2,5},{4},{6}}=>{{1},{2,3},{4,5},{6}}=>1 {{1,3,6},{2},{4,5}}=>{{1,5},{2,3,6},{4}}=>2 {{1,3},{2,6},{4,5}}=>{{1,5},{2,3},{4,6}}=>2 {{1,3},{2},{4,5,6}}=>{{1,5,6},{2,3},{4}}=>3 {{1,3},{2},{4,5},{6}}=>{{1,5},{2,3},{4},{6}}=>2 {{1,3,6},{2},{4},{5}}=>{{1},{2,3},{4,6},{5}}=>1 {{1,3},{2,6},{4},{5}}=>{{1},{2,3},{4},{5,6}}=>1 {{1,3},{2},{4,6},{5}}=>{{1},{2,3,6},{4},{5}}=>1 {{1,3},{2},{4},{5,6}}=>{{1,6},{2,3},{4},{5}}=>2 {{1,3},{2},{4},{5},{6}}=>{{1},{2,3},{4},{5},{6}}=>1 {{1,4,5,6},{2,3}}=>{{1,3,5,6},{2,4}}=>4 {{1,4,5},{2,3,6}}=>{{1,3,5},{2,4,6}}=>3 {{1,4,5},{2,3},{6}}=>{{1,3,5},{2,4},{6}}=>3 {{1,4,6},{2,3,5}}=>{{1,3},{2,4,5,6}}=>2 {{1,4},{2,3,5,6}}=>{{1,3,6},{2,4,5}}=>3 {{1,4},{2,3,5},{6}}=>{{1,3},{2,4,5},{6}}=>2 {{1,4,6},{2,3},{5}}=>{{1,3},{2,4,6},{5}}=>2 {{1,4},{2,3,6},{5}}=>{{1,3},{2,4},{5,6}}=>2 {{1,4},{2,3},{5,6}}=>{{1,3,6},{2,4},{5}}=>3 {{1,4},{2,3},{5},{6}}=>{{1,3},{2,4},{5},{6}}=>2 {{1,5,6},{2,3,4}}=>{{1,3,4,6},{2,5}}=>4 {{1,5},{2,3,4,6}}=>{{1,3,4},{2,5,6}}=>3 {{1,5},{2,3,4},{6}}=>{{1,3,4},{2,5},{6}}=>3 {{1,6},{2,3,4,5}}=>{{1,3,4,5},{2,6}}=>4 {{1},{2,3,4,5,6}}=>{{1,3,4,5,6},{2}}=>5 {{1},{2,3,4,5},{6}}=>{{1,3,4,5},{2},{6}}=>4 {{1,6},{2,3,4},{5}}=>{{1,3,4},{2},{5,6}}=>3 {{1},{2,3,4,6},{5}}=>{{1,3,4},{2,6},{5}}=>3 {{1},{2,3,4},{5,6}}=>{{1,3,4,6},{2},{5}}=>4 {{1},{2,3,4},{5},{6}}=>{{1,3,4},{2},{5},{6}}=>3 {{1,5,6},{2,3},{4}}=>{{1,3,6},{2},{4,5}}=>3 {{1,5},{2,3,6},{4}}=>{{1,3},{2},{4,5,6}}=>2 {{1,5},{2,3},{4,6}}=>{{1,3},{2,6},{4,5}}=>2 {{1,5},{2,3},{4},{6}}=>{{1,3},{2},{4,5},{6}}=>2 {{1,6},{2,3,5},{4}}=>{{1,3},{2,5},{4,6}}=>2 {{1},{2,3,5,6},{4}}=>{{1,3,6},{2,5},{4}}=>3 {{1},{2,3,5},{4,6}}=>{{1,3},{2,5,6},{4}}=>2 {{1},{2,3,5},{4},{6}}=>{{1,3},{2,5},{4},{6}}=>2 {{1,6},{2,3},{4,5}}=>{{1,3,5},{2},{4,6}}=>3 {{1},{2,3,6},{4,5}}=>{{1,3,5},{2,6},{4}}=>3 {{1},{2,3},{4,5,6}}=>{{1,3,5,6},{2},{4}}=>4 {{1},{2,3},{4,5},{6}}=>{{1,3,5},{2},{4},{6}}=>3 {{1,6},{2,3},{4},{5}}=>{{1,3},{2},{4},{5,6}}=>2 {{1},{2,3,6},{4},{5}}=>{{1,3},{2},{4,6},{5}}=>2 {{1},{2,3},{4,6},{5}}=>{{1,3},{2,6},{4},{5}}=>2 {{1},{2,3},{4},{5,6}}=>{{1,3,6},{2},{4},{5}}=>3 {{1},{2,3},{4},{5},{6}}=>{{1,3},{2},{4},{5},{6}}=>2 {{1,4,5,6},{2},{3}}=>{{1,5,6},{2},{3,4}}=>3 {{1,4,5},{2,6},{3}}=>{{1,5},{2},{3,4,6}}=>2 {{1,4,5},{2},{3,6}}=>{{1,5},{2,6},{3,4}}=>2 {{1,4,5},{2},{3},{6}}=>{{1,5},{2},{3,4},{6}}=>2 {{1,4,6},{2,5},{3}}=>{{1},{2,6},{3,4,5}}=>1 {{1,4},{2,5,6},{3}}=>{{1,6},{2},{3,4,5}}=>2 {{1,4},{2,5},{3,6}}=>{{1},{2},{3,4,5,6}}=>1 {{1,4},{2,5},{3},{6}}=>{{1},{2},{3,4,5},{6}}=>1 {{1,4,6},{2},{3,5}}=>{{1},{2,5,6},{3,4}}=>1 {{1,4},{2,6},{3,5}}=>{{1},{2,5},{3,4,6}}=>1 {{1,4},{2},{3,5,6}}=>{{1,6},{2,5},{3,4}}=>2 {{1,4},{2},{3,5},{6}}=>{{1},{2,5},{3,4},{6}}=>1 {{1,4,6},{2},{3},{5}}=>{{1},{2,6},{3,4},{5}}=>1 {{1,4},{2,6},{3},{5}}=>{{1},{2},{3,4},{5,6}}=>1 {{1,4},{2},{3,6},{5}}=>{{1},{2},{3,4,6},{5}}=>1 {{1,4},{2},{3},{5,6}}=>{{1,6},{2},{3,4},{5}}=>2 {{1,4},{2},{3},{5},{6}}=>{{1},{2},{3,4},{5},{6}}=>1 {{1,5,6},{2,4},{3}}=>{{1,6},{2,4},{3,5}}=>2 {{1,5},{2,4,6},{3}}=>{{1},{2,4,6},{3,5}}=>1 {{1,5},{2,4},{3,6}}=>{{1},{2,4},{3,5,6}}=>1 {{1,5},{2,4},{3},{6}}=>{{1},{2,4},{3,5},{6}}=>1 {{1,6},{2,4,5},{3}}=>{{1,5},{2,4},{3,6}}=>2 {{1},{2,4,5,6},{3}}=>{{1,5,6},{2,4},{3}}=>3 {{1},{2,4,5},{3,6}}=>{{1,5},{2,4,6},{3}}=>2 {{1},{2,4,5},{3},{6}}=>{{1,5},{2,4},{3},{6}}=>2 {{1,6},{2,4},{3,5}}=>{{1},{2,4,5},{3,6}}=>1 {{1},{2,4,6},{3,5}}=>{{1},{2,4,5,6},{3}}=>1 {{1},{2,4},{3,5,6}}=>{{1,6},{2,4,5},{3}}=>2 {{1},{2,4},{3,5},{6}}=>{{1},{2,4,5},{3},{6}}=>1 {{1,6},{2,4},{3},{5}}=>{{1},{2,4},{3},{5,6}}=>1 {{1},{2,4,6},{3},{5}}=>{{1},{2,4,6},{3},{5}}=>1 {{1},{2,4},{3,6},{5}}=>{{1},{2,4},{3,6},{5}}=>1 {{1},{2,4},{3},{5,6}}=>{{1,6},{2,4},{3},{5}}=>2 {{1},{2,4},{3},{5},{6}}=>{{1},{2,4},{3},{5},{6}}=>1 {{1,5,6},{2},{3,4}}=>{{1,4,6},{2},{3,5}}=>3 {{1,5},{2,6},{3,4}}=>{{1,4},{2},{3,5,6}}=>2 {{1,5},{2},{3,4,6}}=>{{1,4},{2,6},{3,5}}=>2 {{1,5},{2},{3,4},{6}}=>{{1,4},{2},{3,5},{6}}=>2 {{1,6},{2,5},{3,4}}=>{{1,4},{2,5},{3,6}}=>2 {{1},{2,5,6},{3,4}}=>{{1,4,6},{2,5},{3}}=>3 {{1},{2,5},{3,4,6}}=>{{1,4},{2,5,6},{3}}=>2 {{1},{2,5},{3,4},{6}}=>{{1,4},{2,5},{3},{6}}=>2 {{1,6},{2},{3,4,5}}=>{{1,4,5},{2},{3,6}}=>3 {{1},{2,6},{3,4,5}}=>{{1,4,5},{2,6},{3}}=>3 {{1},{2},{3,4,5,6}}=>{{1,4,5,6},{2},{3}}=>4 {{1},{2},{3,4,5},{6}}=>{{1,4,5},{2},{3},{6}}=>3 {{1,6},{2},{3,4},{5}}=>{{1,4},{2},{3},{5,6}}=>2 {{1},{2,6},{3,4},{5}}=>{{1,4},{2},{3,6},{5}}=>2 {{1},{2},{3,4,6},{5}}=>{{1,4},{2,6},{3},{5}}=>2 {{1},{2},{3,4},{5,6}}=>{{1,4,6},{2},{3},{5}}=>3 {{1},{2},{3,4},{5},{6}}=>{{1,4},{2},{3},{5},{6}}=>2 {{1,5,6},{2},{3},{4}}=>{{1,6},{2},{3},{4,5}}=>2 {{1,5},{2,6},{3},{4}}=>{{1},{2},{3},{4,5,6}}=>1 {{1,5},{2},{3,6},{4}}=>{{1},{2},{3,6},{4,5}}=>1 {{1,5},{2},{3},{4,6}}=>{{1},{2,6},{3},{4,5}}=>1 {{1,5},{2},{3},{4},{6}}=>{{1},{2},{3},{4,5},{6}}=>1 {{1,6},{2,5},{3},{4}}=>{{1},{2},{3,5},{4,6}}=>1 {{1},{2,5,6},{3},{4}}=>{{1,6},{2},{3,5},{4}}=>2 {{1},{2,5},{3,6},{4}}=>{{1},{2},{3,5,6},{4}}=>1 {{1},{2,5},{3},{4,6}}=>{{1},{2,6},{3,5},{4}}=>1 {{1},{2,5},{3},{4},{6}}=>{{1},{2},{3,5},{4},{6}}=>1 {{1,6},{2},{3,5},{4}}=>{{1},{2,5},{3},{4,6}}=>1 {{1},{2,6},{3,5},{4}}=>{{1},{2,5},{3,6},{4}}=>1 {{1},{2},{3,5,6},{4}}=>{{1,6},{2,5},{3},{4}}=>2 {{1},{2},{3,5},{4,6}}=>{{1},{2,5,6},{3},{4}}=>1 {{1},{2},{3,5},{4},{6}}=>{{1},{2,5},{3},{4},{6}}=>1 {{1,6},{2},{3},{4,5}}=>{{1,5},{2},{3},{4,6}}=>2 {{1},{2,6},{3},{4,5}}=>{{1,5},{2},{3,6},{4}}=>2 {{1},{2},{3,6},{4,5}}=>{{1,5},{2,6},{3},{4}}=>2 {{1},{2},{3},{4,5,6}}=>{{1,5,6},{2},{3},{4}}=>3 {{1},{2},{3},{4,5},{6}}=>{{1,5},{2},{3},{4},{6}}=>2 {{1,6},{2},{3},{4},{5}}=>{{1},{2},{3},{4},{5,6}}=>1 {{1},{2,6},{3},{4},{5}}=>{{1},{2},{3},{4,6},{5}}=>1 {{1},{2},{3,6},{4},{5}}=>{{1},{2},{3,6},{4},{5}}=>1 {{1},{2},{3},{4,6},{5}}=>{{1},{2,6},{3},{4},{5}}=>1 {{1},{2},{3},{4},{5,6}}=>{{1,6},{2},{3},{4},{5}}=>2 {{1},{2},{3},{4},{5},{6}}=>{{1},{2},{3},{4},{5},{6}}=>1 {{1,2,3,4,5,6,7}}=>{{1,2,3,4,5,6,7}}=>7 {{1,2,3,4,5,6},{7}}=>{{1,2,3,4,5,6},{7}}=>6 {{1,2,3,4,5,7},{6}}=>{{1,2,3,4,5},{6,7}}=>5 {{1,2,3,4,5},{6,7}}=>{{1,2,3,4,5,7},{6}}=>6 {{1,2,3,4,5},{6},{7}}=>{{1,2,3,4,5},{6},{7}}=>5 {{1,2,3,4,6,7},{5}}=>{{1,2,3,4,7},{5,6}}=>5 {{1,2,3,4,6},{5,7}}=>{{1,2,3,4},{5,6,7}}=>4 {{1,2,3,4,6},{5},{7}}=>{{1,2,3,4},{5,6},{7}}=>4 {{1,2,3,4,7},{5,6}}=>{{1,2,3,4,6},{5,7}}=>5 {{1,2,3,4},{5,6,7}}=>{{1,2,3,4,6,7},{5}}=>6 {{1,2,3,4},{5,6},{7}}=>{{1,2,3,4,6},{5},{7}}=>5 {{1,2,3,4,7},{5},{6}}=>{{1,2,3,4},{5},{6,7}}=>4 {{1,2,3,4},{5,7},{6}}=>{{1,2,3,4},{5,7},{6}}=>4 {{1,2,3,4},{5},{6,7}}=>{{1,2,3,4,7},{5},{6}}=>5 {{1,2,3,4},{5},{6},{7}}=>{{1,2,3,4},{5},{6},{7}}=>4 {{1,2,3,5,6,7},{4}}=>{{1,2,3,6,7},{4,5}}=>5 {{1,2,3,5,6},{4,7}}=>{{1,2,3,6},{4,5,7}}=>4 {{1,2,3,5,6},{4},{7}}=>{{1,2,3,6},{4,5},{7}}=>4 {{1,2,3,5,7},{4,6}}=>{{1,2,3},{4,5,6,7}}=>3 {{1,2,3,5},{4,6,7}}=>{{1,2,3,7},{4,5,6}}=>4 {{1,2,3,5},{4,6},{7}}=>{{1,2,3},{4,5,6},{7}}=>3 {{1,2,3,5,7},{4},{6}}=>{{1,2,3},{4,5,7},{6}}=>3 {{1,2,3,5},{4,7},{6}}=>{{1,2,3},{4,5},{6,7}}=>3 {{1,2,3,5},{4},{6,7}}=>{{1,2,3,7},{4,5},{6}}=>4 {{1,2,3,5},{4},{6},{7}}=>{{1,2,3},{4,5},{6},{7}}=>3 {{1,2,3,6,7},{4,5}}=>{{1,2,3,5,7},{4,6}}=>5 {{1,2,3,6},{4,5,7}}=>{{1,2,3,5},{4,6,7}}=>4 {{1,2,3,6},{4,5},{7}}=>{{1,2,3,5},{4,6},{7}}=>4 {{1,2,3,7},{4,5,6}}=>{{1,2,3,5,6},{4,7}}=>5 {{1,2,3},{4,5,6,7}}=>{{1,2,3,5,6,7},{4}}=>6 {{1,2,3},{4,5,6},{7}}=>{{1,2,3,5,6},{4},{7}}=>5 {{1,2,3,7},{4,5},{6}}=>{{1,2,3,5},{4},{6,7}}=>4 {{1,2,3},{4,5,7},{6}}=>{{1,2,3,5},{4,7},{6}}=>4 {{1,2,3},{4,5},{6,7}}=>{{1,2,3,5,7},{4},{6}}=>5 {{1,2,3},{4,5},{6},{7}}=>{{1,2,3,5},{4},{6},{7}}=>4 {{1,2,3,6,7},{4},{5}}=>{{1,2,3,7},{4},{5,6}}=>4 {{1,2,3,6},{4,7},{5}}=>{{1,2,3},{4},{5,6,7}}=>3 {{1,2,3,6},{4},{5,7}}=>{{1,2,3},{4,7},{5,6}}=>3 {{1,2,3,6},{4},{5},{7}}=>{{1,2,3},{4},{5,6},{7}}=>3 {{1,2,3,7},{4,6},{5}}=>{{1,2,3},{4,6},{5,7}}=>3 {{1,2,3},{4,6,7},{5}}=>{{1,2,3,7},{4,6},{5}}=>4 {{1,2,3},{4,6},{5,7}}=>{{1,2,3},{4,6,7},{5}}=>3 {{1,2,3},{4,6},{5},{7}}=>{{1,2,3},{4,6},{5},{7}}=>3 {{1,2,3,7},{4},{5,6}}=>{{1,2,3,6},{4},{5,7}}=>4 {{1,2,3},{4,7},{5,6}}=>{{1,2,3,6},{4,7},{5}}=>4 {{1,2,3},{4},{5,6,7}}=>{{1,2,3,6,7},{4},{5}}=>5 {{1,2,3},{4},{5,6},{7}}=>{{1,2,3,6},{4},{5},{7}}=>4 {{1,2,3,7},{4},{5},{6}}=>{{1,2,3},{4},{5},{6,7}}=>3 {{1,2,3},{4,7},{5},{6}}=>{{1,2,3},{4},{5,7},{6}}=>3 {{1,2,3},{4},{5,7},{6}}=>{{1,2,3},{4,7},{5},{6}}=>3 {{1,2,3},{4},{5},{6,7}}=>{{1,2,3,7},{4},{5},{6}}=>4 {{1,2,3},{4},{5},{6},{7}}=>{{1,2,3},{4},{5},{6},{7}}=>3 {{1,2,4,5,6,7},{3}}=>{{1,2,5,6,7},{3,4}}=>5 {{1,2,4,5,6},{3,7}}=>{{1,2,5,6},{3,4,7}}=>4 {{1,2,4,5,6},{3},{7}}=>{{1,2,5,6},{3,4},{7}}=>4 {{1,2,4,5,7},{3,6}}=>{{1,2,5},{3,4,6,7}}=>3 {{1,2,4,5},{3,6,7}}=>{{1,2,5,7},{3,4,6}}=>4 {{1,2,4,5},{3,6},{7}}=>{{1,2,5},{3,4,6},{7}}=>3 {{1,2,4,5,7},{3},{6}}=>{{1,2,5},{3,4,7},{6}}=>3 {{1,2,4,5},{3,7},{6}}=>{{1,2,5},{3,4},{6,7}}=>3 {{1,2,4,5},{3},{6,7}}=>{{1,2,5,7},{3,4},{6}}=>4 {{1,2,4,5},{3},{6},{7}}=>{{1,2,5},{3,4},{6},{7}}=>3 {{1,2,4,6,7},{3,5}}=>{{1,2,7},{3,4,5,6}}=>3 {{1,2,4,6},{3,5,7}}=>{{1,2},{3,4,5,6,7}}=>2 {{1,2,4,6},{3,5},{7}}=>{{1,2},{3,4,5,6},{7}}=>2 {{1,2,4,7},{3,5,6}}=>{{1,2,6},{3,4,5,7}}=>3 {{1,2,4},{3,5,6,7}}=>{{1,2,6,7},{3,4,5}}=>4 {{1,2,4},{3,5,6},{7}}=>{{1,2,6},{3,4,5},{7}}=>3 {{1,2,4,7},{3,5},{6}}=>{{1,2},{3,4,5},{6,7}}=>2 {{1,2,4},{3,5,7},{6}}=>{{1,2},{3,4,5,7},{6}}=>2 {{1,2,4},{3,5},{6,7}}=>{{1,2,7},{3,4,5},{6}}=>3 {{1,2,4},{3,5},{6},{7}}=>{{1,2},{3,4,5},{6},{7}}=>2 {{1,2,4,6,7},{3},{5}}=>{{1,2,7},{3,4,6},{5}}=>3 {{1,2,4,6},{3,7},{5}}=>{{1,2},{3,4,6},{5,7}}=>2 {{1,2,4,6},{3},{5,7}}=>{{1,2},{3,4,6,7},{5}}=>2 {{1,2,4,6},{3},{5},{7}}=>{{1,2},{3,4,6},{5},{7}}=>2 {{1,2,4,7},{3,6},{5}}=>{{1,2},{3,4},{5,6,7}}=>2 {{1,2,4},{3,6,7},{5}}=>{{1,2,7},{3,4},{5,6}}=>3 {{1,2,4},{3,6},{5,7}}=>{{1,2},{3,4,7},{5,6}}=>2 {{1,2,4},{3,6},{5},{7}}=>{{1,2},{3,4},{5,6},{7}}=>2 {{1,2,4,7},{3},{5,6}}=>{{1,2,6},{3,4,7},{5}}=>3 {{1,2,4},{3,7},{5,6}}=>{{1,2,6},{3,4},{5,7}}=>3 {{1,2,4},{3},{5,6,7}}=>{{1,2,6,7},{3,4},{5}}=>4 {{1,2,4},{3},{5,6},{7}}=>{{1,2,6},{3,4},{5},{7}}=>3 {{1,2,4,7},{3},{5},{6}}=>{{1,2},{3,4},{5,7},{6}}=>2 {{1,2,4},{3,7},{5},{6}}=>{{1,2},{3,4},{5},{6,7}}=>2 {{1,2,4},{3},{5,7},{6}}=>{{1,2},{3,4,7},{5},{6}}=>2 {{1,2,4},{3},{5},{6,7}}=>{{1,2,7},{3,4},{5},{6}}=>3 {{1,2,4},{3},{5},{6},{7}}=>{{1,2},{3,4},{5},{6},{7}}=>2 {{1,2,5,6,7},{3,4}}=>{{1,2,4,6,7},{3,5}}=>5 {{1,2,5,6},{3,4,7}}=>{{1,2,4,6},{3,5,7}}=>4 {{1,2,5,6},{3,4},{7}}=>{{1,2,4,6},{3,5},{7}}=>4 {{1,2,5,7},{3,4,6}}=>{{1,2,4},{3,5,6,7}}=>3 {{1,2,5},{3,4,6,7}}=>{{1,2,4,7},{3,5,6}}=>4 {{1,2,5},{3,4,6},{7}}=>{{1,2,4},{3,5,6},{7}}=>3 {{1,2,5,7},{3,4},{6}}=>{{1,2,4},{3,5,7},{6}}=>3 {{1,2,5},{3,4,7},{6}}=>{{1,2,4},{3,5},{6,7}}=>3 {{1,2,5},{3,4},{6,7}}=>{{1,2,4,7},{3,5},{6}}=>4 {{1,2,5},{3,4},{6},{7}}=>{{1,2,4},{3,5},{6},{7}}=>3 {{1,2,6,7},{3,4,5}}=>{{1,2,4,5,7},{3,6}}=>5 {{1,2,6},{3,4,5,7}}=>{{1,2,4,5},{3,6,7}}=>4 {{1,2,6},{3,4,5},{7}}=>{{1,2,4,5},{3,6},{7}}=>4 {{1,2,7},{3,4,5,6}}=>{{1,2,4,5,6},{3,7}}=>5 {{1,2},{3,4,5,6,7}}=>{{1,2,4,5,6,7},{3}}=>6 {{1,2},{3,4,5,6},{7}}=>{{1,2,4,5,6},{3},{7}}=>5 {{1,2,7},{3,4,5},{6}}=>{{1,2,4,5},{3},{6,7}}=>4 {{1,2},{3,4,5,7},{6}}=>{{1,2,4,5},{3,7},{6}}=>4 {{1,2},{3,4,5},{6,7}}=>{{1,2,4,5,7},{3},{6}}=>5 {{1,2},{3,4,5},{6},{7}}=>{{1,2,4,5},{3},{6},{7}}=>4 {{1,2,6,7},{3,4},{5}}=>{{1,2,4,7},{3},{5,6}}=>4 {{1,2,6},{3,4,7},{5}}=>{{1,2,4},{3},{5,6,7}}=>3 {{1,2,6},{3,4},{5,7}}=>{{1,2,4},{3,7},{5,6}}=>3 {{1,2,6},{3,4},{5},{7}}=>{{1,2,4},{3},{5,6},{7}}=>3 {{1,2,7},{3,4,6},{5}}=>{{1,2,4},{3,6},{5,7}}=>3 {{1,2},{3,4,6,7},{5}}=>{{1,2,4,7},{3,6},{5}}=>4 {{1,2},{3,4,6},{5,7}}=>{{1,2,4},{3,6,7},{5}}=>3 {{1,2},{3,4,6},{5},{7}}=>{{1,2,4},{3,6},{5},{7}}=>3 {{1,2,7},{3,4},{5,6}}=>{{1,2,4,6},{3},{5,7}}=>4 {{1,2},{3,4,7},{5,6}}=>{{1,2,4,6},{3,7},{5}}=>4 {{1,2},{3,4},{5,6,7}}=>{{1,2,4,6,7},{3},{5}}=>5 {{1,2},{3,4},{5,6},{7}}=>{{1,2,4,6},{3},{5},{7}}=>4 {{1,2,7},{3,4},{5},{6}}=>{{1,2,4},{3},{5},{6,7}}=>3 {{1,2},{3,4,7},{5},{6}}=>{{1,2,4},{3},{5,7},{6}}=>3 {{1,2},{3,4},{5,7},{6}}=>{{1,2,4},{3,7},{5},{6}}=>3 {{1,2},{3,4},{5},{6,7}}=>{{1,2,4,7},{3},{5},{6}}=>4 {{1,2},{3,4},{5},{6},{7}}=>{{1,2,4},{3},{5},{6},{7}}=>3 {{1,2,5,6,7},{3},{4}}=>{{1,2,6,7},{3},{4,5}}=>4 {{1,2,5,6},{3,7},{4}}=>{{1,2,6},{3},{4,5,7}}=>3 {{1,2,5,6},{3},{4,7}}=>{{1,2,6},{3,7},{4,5}}=>3 {{1,2,5,6},{3},{4},{7}}=>{{1,2,6},{3},{4,5},{7}}=>3 {{1,2,5,7},{3,6},{4}}=>{{1,2},{3,7},{4,5,6}}=>2 {{1,2,5},{3,6,7},{4}}=>{{1,2,7},{3},{4,5,6}}=>3 {{1,2,5},{3,6},{4,7}}=>{{1,2},{3},{4,5,6,7}}=>2 {{1,2,5},{3,6},{4},{7}}=>{{1,2},{3},{4,5,6},{7}}=>2 {{1,2,5,7},{3},{4,6}}=>{{1,2},{3,6,7},{4,5}}=>2 {{1,2,5},{3,7},{4,6}}=>{{1,2},{3,6},{4,5,7}}=>2 {{1,2,5},{3},{4,6,7}}=>{{1,2,7},{3,6},{4,5}}=>3 {{1,2,5},{3},{4,6},{7}}=>{{1,2},{3,6},{4,5},{7}}=>2 {{1,2,5,7},{3},{4},{6}}=>{{1,2},{3,7},{4,5},{6}}=>2 {{1,2,5},{3,7},{4},{6}}=>{{1,2},{3},{4,5},{6,7}}=>2 {{1,2,5},{3},{4,7},{6}}=>{{1,2},{3},{4,5,7},{6}}=>2 {{1,2,5},{3},{4},{6,7}}=>{{1,2,7},{3},{4,5},{6}}=>3 {{1,2,5},{3},{4},{6},{7}}=>{{1,2},{3},{4,5},{6},{7}}=>2 {{1,2,6,7},{3,5},{4}}=>{{1,2,7},{3,5},{4,6}}=>3 {{1,2,6},{3,5,7},{4}}=>{{1,2},{3,5,7},{4,6}}=>2 {{1,2,6},{3,5},{4,7}}=>{{1,2},{3,5},{4,6,7}}=>2 {{1,2,6},{3,5},{4},{7}}=>{{1,2},{3,5},{4,6},{7}}=>2 {{1,2,7},{3,5,6},{4}}=>{{1,2,6},{3,5},{4,7}}=>3 {{1,2},{3,5,6,7},{4}}=>{{1,2,6,7},{3,5},{4}}=>4 {{1,2},{3,5,6},{4,7}}=>{{1,2,6},{3,5,7},{4}}=>3 {{1,2},{3,5,6},{4},{7}}=>{{1,2,6},{3,5},{4},{7}}=>3 {{1,2,7},{3,5},{4,6}}=>{{1,2},{3,5,6},{4,7}}=>2 {{1,2},{3,5,7},{4,6}}=>{{1,2},{3,5,6,7},{4}}=>2 {{1,2},{3,5},{4,6,7}}=>{{1,2,7},{3,5,6},{4}}=>3 {{1,2},{3,5},{4,6},{7}}=>{{1,2},{3,5,6},{4},{7}}=>2 {{1,2,7},{3,5},{4},{6}}=>{{1,2},{3,5},{4},{6,7}}=>2 {{1,2},{3,5,7},{4},{6}}=>{{1,2},{3,5,7},{4},{6}}=>2 {{1,2},{3,5},{4,7},{6}}=>{{1,2},{3,5},{4,7},{6}}=>2 {{1,2},{3,5},{4},{6,7}}=>{{1,2,7},{3,5},{4},{6}}=>3 {{1,2},{3,5},{4},{6},{7}}=>{{1,2},{3,5},{4},{6},{7}}=>2 {{1,2,6,7},{3},{4,5}}=>{{1,2,5,7},{3},{4,6}}=>4 {{1,2,6},{3,7},{4,5}}=>{{1,2,5},{3},{4,6,7}}=>3 {{1,2,6},{3},{4,5,7}}=>{{1,2,5},{3,7},{4,6}}=>3 {{1,2,6},{3},{4,5},{7}}=>{{1,2,5},{3},{4,6},{7}}=>3 {{1,2,7},{3,6},{4,5}}=>{{1,2,5},{3,6},{4,7}}=>3 {{1,2},{3,6,7},{4,5}}=>{{1,2,5,7},{3,6},{4}}=>4 {{1,2},{3,6},{4,5,7}}=>{{1,2,5},{3,6,7},{4}}=>3 {{1,2},{3,6},{4,5},{7}}=>{{1,2,5},{3,6},{4},{7}}=>3 {{1,2,7},{3},{4,5,6}}=>{{1,2,5,6},{3},{4,7}}=>4 {{1,2},{3,7},{4,5,6}}=>{{1,2,5,6},{3,7},{4}}=>4 {{1,2},{3},{4,5,6,7}}=>{{1,2,5,6,7},{3},{4}}=>5 {{1,2},{3},{4,5,6},{7}}=>{{1,2,5,6},{3},{4},{7}}=>4 {{1,2,7},{3},{4,5},{6}}=>{{1,2,5},{3},{4},{6,7}}=>3 {{1,2},{3,7},{4,5},{6}}=>{{1,2,5},{3},{4,7},{6}}=>3 {{1,2},{3},{4,5,7},{6}}=>{{1,2,5},{3,7},{4},{6}}=>3 {{1,2},{3},{4,5},{6,7}}=>{{1,2,5,7},{3},{4},{6}}=>4 {{1,2},{3},{4,5},{6},{7}}=>{{1,2,5},{3},{4},{6},{7}}=>3 {{1,2,6,7},{3},{4},{5}}=>{{1,2,7},{3},{4},{5,6}}=>3 {{1,2,6},{3,7},{4},{5}}=>{{1,2},{3},{4},{5,6,7}}=>2 {{1,2,6},{3},{4,7},{5}}=>{{1,2},{3},{4,7},{5,6}}=>2 {{1,2,6},{3},{4},{5,7}}=>{{1,2},{3,7},{4},{5,6}}=>2 {{1,2,6},{3},{4},{5},{7}}=>{{1,2},{3},{4},{5,6},{7}}=>2 {{1,2,7},{3,6},{4},{5}}=>{{1,2},{3},{4,6},{5,7}}=>2 {{1,2},{3,6,7},{4},{5}}=>{{1,2,7},{3},{4,6},{5}}=>3 {{1,2},{3,6},{4,7},{5}}=>{{1,2},{3},{4,6,7},{5}}=>2 {{1,2},{3,6},{4},{5,7}}=>{{1,2},{3,7},{4,6},{5}}=>2 {{1,2},{3,6},{4},{5},{7}}=>{{1,2},{3},{4,6},{5},{7}}=>2 {{1,2,7},{3},{4,6},{5}}=>{{1,2},{3,6},{4},{5,7}}=>2 {{1,2},{3,7},{4,6},{5}}=>{{1,2},{3,6},{4,7},{5}}=>2 {{1,2},{3},{4,6,7},{5}}=>{{1,2,7},{3,6},{4},{5}}=>3 {{1,2},{3},{4,6},{5,7}}=>{{1,2},{3,6,7},{4},{5}}=>2 {{1,2},{3},{4,6},{5},{7}}=>{{1,2},{3,6},{4},{5},{7}}=>2 {{1,2,7},{3},{4},{5,6}}=>{{1,2,6},{3},{4},{5,7}}=>3 {{1,2},{3,7},{4},{5,6}}=>{{1,2,6},{3},{4,7},{5}}=>3 {{1,2},{3},{4,7},{5,6}}=>{{1,2,6},{3,7},{4},{5}}=>3 {{1,2},{3},{4},{5,6,7}}=>{{1,2,6,7},{3},{4},{5}}=>4 {{1,2},{3},{4},{5,6},{7}}=>{{1,2,6},{3},{4},{5},{7}}=>3 {{1,2,7},{3},{4},{5},{6}}=>{{1,2},{3},{4},{5},{6,7}}=>2 {{1,2},{3,7},{4},{5},{6}}=>{{1,2},{3},{4},{5,7},{6}}=>2 {{1,2},{3},{4,7},{5},{6}}=>{{1,2},{3},{4,7},{5},{6}}=>2 {{1,2},{3},{4},{5,7},{6}}=>{{1,2},{3,7},{4},{5},{6}}=>2 {{1,2},{3},{4},{5},{6,7}}=>{{1,2,7},{3},{4},{5},{6}}=>3 {{1,2},{3},{4},{5},{6},{7}}=>{{1,2},{3},{4},{5},{6},{7}}=>2 {{1,3,4,5,6,7},{2}}=>{{1,4,5,6,7},{2,3}}=>5 {{1,3,4,5,6},{2,7}}=>{{1,4,5,6},{2,3,7}}=>4 {{1,3,4,5,6},{2},{7}}=>{{1,4,5,6},{2,3},{7}}=>4 {{1,3,4,5,7},{2,6}}=>{{1,4,5},{2,3,6,7}}=>3 {{1,3,4,5},{2,6,7}}=>{{1,4,5,7},{2,3,6}}=>4 {{1,3,4,5},{2,6},{7}}=>{{1,4,5},{2,3,6},{7}}=>3 {{1,3,4,5,7},{2},{6}}=>{{1,4,5},{2,3,7},{6}}=>3 {{1,3,4,5},{2,7},{6}}=>{{1,4,5},{2,3},{6,7}}=>3 {{1,3,4,5},{2},{6,7}}=>{{1,4,5,7},{2,3},{6}}=>4 {{1,3,4,5},{2},{6},{7}}=>{{1,4,5},{2,3},{6},{7}}=>3 {{1,3,4,6,7},{2,5}}=>{{1,4,7},{2,3,5,6}}=>3 {{1,3,4,6},{2,5,7}}=>{{1,4},{2,3,5,6,7}}=>2 {{1,3,4,6},{2,5},{7}}=>{{1,4},{2,3,5,6},{7}}=>2 {{1,3,4,7},{2,5,6}}=>{{1,4,6},{2,3,5,7}}=>3 {{1,3,4},{2,5,6,7}}=>{{1,4,6,7},{2,3,5}}=>4 {{1,3,4},{2,5,6},{7}}=>{{1,4,6},{2,3,5},{7}}=>3 {{1,3,4,7},{2,5},{6}}=>{{1,4},{2,3,5},{6,7}}=>2 {{1,3,4},{2,5,7},{6}}=>{{1,4},{2,3,5,7},{6}}=>2 {{1,3,4},{2,5},{6,7}}=>{{1,4,7},{2,3,5},{6}}=>3 {{1,3,4},{2,5},{6},{7}}=>{{1,4},{2,3,5},{6},{7}}=>2 {{1,3,4,6,7},{2},{5}}=>{{1,4,7},{2,3,6},{5}}=>3 {{1,3,4,6},{2,7},{5}}=>{{1,4},{2,3,6},{5,7}}=>2 {{1,3,4,6},{2},{5,7}}=>{{1,4},{2,3,6,7},{5}}=>2 {{1,3,4,6},{2},{5},{7}}=>{{1,4},{2,3,6},{5},{7}}=>2 {{1,3,4,7},{2,6},{5}}=>{{1,4},{2,3},{5,6,7}}=>2 {{1,3,4},{2,6,7},{5}}=>{{1,4,7},{2,3},{5,6}}=>3 {{1,3,4},{2,6},{5,7}}=>{{1,4},{2,3,7},{5,6}}=>2 {{1,3,4},{2,6},{5},{7}}=>{{1,4},{2,3},{5,6},{7}}=>2 {{1,3,4,7},{2},{5,6}}=>{{1,4,6},{2,3,7},{5}}=>3 {{1,3,4},{2,7},{5,6}}=>{{1,4,6},{2,3},{5,7}}=>3 {{1,3,4},{2},{5,6,7}}=>{{1,4,6,7},{2,3},{5}}=>4 {{1,3,4},{2},{5,6},{7}}=>{{1,4,6},{2,3},{5},{7}}=>3 {{1,3,4,7},{2},{5},{6}}=>{{1,4},{2,3},{5,7},{6}}=>2 {{1,3,4},{2,7},{5},{6}}=>{{1,4},{2,3},{5},{6,7}}=>2 {{1,3,4},{2},{5,7},{6}}=>{{1,4},{2,3,7},{5},{6}}=>2 {{1,3,4},{2},{5},{6,7}}=>{{1,4,7},{2,3},{5},{6}}=>3 {{1,3,4},{2},{5},{6},{7}}=>{{1,4},{2,3},{5},{6},{7}}=>2 {{1,3,5,6,7},{2,4}}=>{{1,6,7},{2,3,4,5}}=>3 {{1,3,5,6},{2,4,7}}=>{{1,6},{2,3,4,5,7}}=>2 {{1,3,5,6},{2,4},{7}}=>{{1,6},{2,3,4,5},{7}}=>2 {{1,3,5,7},{2,4,6}}=>{{1},{2,3,4,5,6,7}}=>1 {{1,3,5},{2,4,6,7}}=>{{1,7},{2,3,4,5,6}}=>2 {{1,3,5},{2,4,6},{7}}=>{{1},{2,3,4,5,6},{7}}=>1 {{1,3,5,7},{2,4},{6}}=>{{1},{2,3,4,5,7},{6}}=>1 {{1,3,5},{2,4,7},{6}}=>{{1},{2,3,4,5},{6,7}}=>1 {{1,3,5},{2,4},{6,7}}=>{{1,7},{2,3,4,5},{6}}=>2 {{1,3,5},{2,4},{6},{7}}=>{{1},{2,3,4,5},{6},{7}}=>1 {{1,3,6,7},{2,4,5}}=>{{1,5,7},{2,3,4,6}}=>3 {{1,3,6},{2,4,5,7}}=>{{1,5},{2,3,4,6,7}}=>2 {{1,3,6},{2,4,5},{7}}=>{{1,5},{2,3,4,6},{7}}=>2 {{1,3,7},{2,4,5,6}}=>{{1,5,6},{2,3,4,7}}=>3 {{1,3},{2,4,5,6,7}}=>{{1,5,6,7},{2,3,4}}=>4 {{1,3},{2,4,5,6},{7}}=>{{1,5,6},{2,3,4},{7}}=>3 {{1,3,7},{2,4,5},{6}}=>{{1,5},{2,3,4},{6,7}}=>2 {{1,3},{2,4,5,7},{6}}=>{{1,5},{2,3,4,7},{6}}=>2 {{1,3},{2,4,5},{6,7}}=>{{1,5,7},{2,3,4},{6}}=>3 {{1,3},{2,4,5},{6},{7}}=>{{1,5},{2,3,4},{6},{7}}=>2 {{1,3,6,7},{2,4},{5}}=>{{1,7},{2,3,4},{5,6}}=>2 {{1,3,6},{2,4,7},{5}}=>{{1},{2,3,4},{5,6,7}}=>1 {{1,3,6},{2,4},{5,7}}=>{{1},{2,3,4,7},{5,6}}=>1 {{1,3,6},{2,4},{5},{7}}=>{{1},{2,3,4},{5,6},{7}}=>1 {{1,3,7},{2,4,6},{5}}=>{{1},{2,3,4,6},{5,7}}=>1 {{1,3},{2,4,6,7},{5}}=>{{1,7},{2,3,4,6},{5}}=>2 {{1,3},{2,4,6},{5,7}}=>{{1},{2,3,4,6,7},{5}}=>1 {{1,3},{2,4,6},{5},{7}}=>{{1},{2,3,4,6},{5},{7}}=>1 {{1,3,7},{2,4},{5,6}}=>{{1,6},{2,3,4},{5,7}}=>2 {{1,3},{2,4,7},{5,6}}=>{{1,6},{2,3,4,7},{5}}=>2 {{1,3},{2,4},{5,6,7}}=>{{1,6,7},{2,3,4},{5}}=>3 {{1,3},{2,4},{5,6},{7}}=>{{1,6},{2,3,4},{5},{7}}=>2 {{1,3,7},{2,4},{5},{6}}=>{{1},{2,3,4},{5},{6,7}}=>1 {{1,3},{2,4,7},{5},{6}}=>{{1},{2,3,4},{5,7},{6}}=>1 {{1,3},{2,4},{5,7},{6}}=>{{1},{2,3,4,7},{5},{6}}=>1 {{1,3},{2,4},{5},{6,7}}=>{{1,7},{2,3,4},{5},{6}}=>2 {{1,3},{2,4},{5},{6},{7}}=>{{1},{2,3,4},{5},{6},{7}}=>1 {{1,3,5,6,7},{2},{4}}=>{{1,6,7},{2,3,5},{4}}=>3 {{1,3,5,6},{2,7},{4}}=>{{1,6},{2,3,5},{4,7}}=>2 {{1,3,5,6},{2},{4,7}}=>{{1,6},{2,3,5,7},{4}}=>2 {{1,3,5,6},{2},{4},{7}}=>{{1,6},{2,3,5},{4},{7}}=>2 {{1,3,5,7},{2,6},{4}}=>{{1},{2,3,5,7},{4,6}}=>1 {{1,3,5},{2,6,7},{4}}=>{{1,7},{2,3,5},{4,6}}=>2 {{1,3,5},{2,6},{4,7}}=>{{1},{2,3,5},{4,6,7}}=>1 {{1,3,5},{2,6},{4},{7}}=>{{1},{2,3,5},{4,6},{7}}=>1 {{1,3,5,7},{2},{4,6}}=>{{1},{2,3,5,6,7},{4}}=>1 {{1,3,5},{2,7},{4,6}}=>{{1},{2,3,5,6},{4,7}}=>1 {{1,3,5},{2},{4,6,7}}=>{{1,7},{2,3,5,6},{4}}=>2 {{1,3,5},{2},{4,6},{7}}=>{{1},{2,3,5,6},{4},{7}}=>1 {{1,3,5,7},{2},{4},{6}}=>{{1},{2,3,5,7},{4},{6}}=>1 {{1,3,5},{2,7},{4},{6}}=>{{1},{2,3,5},{4},{6,7}}=>1 {{1,3,5},{2},{4,7},{6}}=>{{1},{2,3,5},{4,7},{6}}=>1 {{1,3,5},{2},{4},{6,7}}=>{{1,7},{2,3,5},{4},{6}}=>2 {{1,3,5},{2},{4},{6},{7}}=>{{1},{2,3,5},{4},{6},{7}}=>1 {{1,3,6,7},{2,5},{4}}=>{{1,7},{2,3},{4,5,6}}=>2 {{1,3,6},{2,5,7},{4}}=>{{1},{2,3,7},{4,5,6}}=>1 {{1,3,6},{2,5},{4,7}}=>{{1},{2,3},{4,5,6,7}}=>1 {{1,3,6},{2,5},{4},{7}}=>{{1},{2,3},{4,5,6},{7}}=>1 {{1,3,7},{2,5,6},{4}}=>{{1,6},{2,3},{4,5,7}}=>2 {{1,3},{2,5,6,7},{4}}=>{{1,6,7},{2,3},{4,5}}=>3 {{1,3},{2,5,6},{4,7}}=>{{1,6},{2,3,7},{4,5}}=>2 {{1,3},{2,5,6},{4},{7}}=>{{1,6},{2,3},{4,5},{7}}=>2 {{1,3,7},{2,5},{4,6}}=>{{1},{2,3,6},{4,5,7}}=>1 {{1,3},{2,5,7},{4,6}}=>{{1},{2,3,6,7},{4,5}}=>1 {{1,3},{2,5},{4,6,7}}=>{{1,7},{2,3,6},{4,5}}=>2 {{1,3},{2,5},{4,6},{7}}=>{{1},{2,3,6},{4,5},{7}}=>1 {{1,3,7},{2,5},{4},{6}}=>{{1},{2,3},{4,5},{6,7}}=>1 {{1,3},{2,5,7},{4},{6}}=>{{1},{2,3,7},{4,5},{6}}=>1 {{1,3},{2,5},{4,7},{6}}=>{{1},{2,3},{4,5,7},{6}}=>1 {{1,3},{2,5},{4},{6,7}}=>{{1,7},{2,3},{4,5},{6}}=>2 {{1,3},{2,5},{4},{6},{7}}=>{{1},{2,3},{4,5},{6},{7}}=>1 {{1,3,6,7},{2},{4,5}}=>{{1,5,7},{2,3,6},{4}}=>3 {{1,3,6},{2,7},{4,5}}=>{{1,5},{2,3,6},{4,7}}=>2 {{1,3,6},{2},{4,5,7}}=>{{1,5},{2,3,6,7},{4}}=>2 {{1,3,6},{2},{4,5},{7}}=>{{1,5},{2,3,6},{4},{7}}=>2 {{1,3,7},{2,6},{4,5}}=>{{1,5},{2,3},{4,6,7}}=>2 {{1,3},{2,6,7},{4,5}}=>{{1,5,7},{2,3},{4,6}}=>3 {{1,3},{2,6},{4,5,7}}=>{{1,5},{2,3,7},{4,6}}=>2 {{1,3},{2,6},{4,5},{7}}=>{{1,5},{2,3},{4,6},{7}}=>2 {{1,3,7},{2},{4,5,6}}=>{{1,5,6},{2,3,7},{4}}=>3 {{1,3},{2,7},{4,5,6}}=>{{1,5,6},{2,3},{4,7}}=>3 {{1,3},{2},{4,5,6,7}}=>{{1,5,6,7},{2,3},{4}}=>4 {{1,3},{2},{4,5,6},{7}}=>{{1,5,6},{2,3},{4},{7}}=>3 {{1,3,7},{2},{4,5},{6}}=>{{1,5},{2,3},{4,7},{6}}=>2 {{1,3},{2,7},{4,5},{6}}=>{{1,5},{2,3},{4},{6,7}}=>2 {{1,3},{2},{4,5,7},{6}}=>{{1,5},{2,3,7},{4},{6}}=>2 {{1,3},{2},{4,5},{6,7}}=>{{1,5,7},{2,3},{4},{6}}=>3 {{1,3},{2},{4,5},{6},{7}}=>{{1,5},{2,3},{4},{6},{7}}=>2 {{1,3,6,7},{2},{4},{5}}=>{{1,7},{2,3},{4,6},{5}}=>2 {{1,3,6},{2,7},{4},{5}}=>{{1},{2,3},{4,6},{5,7}}=>1 {{1,3,6},{2},{4,7},{5}}=>{{1},{2,3},{4,6,7},{5}}=>1 {{1,3,6},{2},{4},{5,7}}=>{{1},{2,3,7},{4,6},{5}}=>1 {{1,3,6},{2},{4},{5},{7}}=>{{1},{2,3},{4,6},{5},{7}}=>1 {{1,3,7},{2,6},{4},{5}}=>{{1},{2,3},{4},{5,6,7}}=>1 {{1,3},{2,6,7},{4},{5}}=>{{1,7},{2,3},{4},{5,6}}=>2 {{1,3},{2,6},{4,7},{5}}=>{{1},{2,3},{4,7},{5,6}}=>1 {{1,3},{2,6},{4},{5,7}}=>{{1},{2,3,7},{4},{5,6}}=>1 {{1,3},{2,6},{4},{5},{7}}=>{{1},{2,3},{4},{5,6},{7}}=>1 {{1,3,7},{2},{4,6},{5}}=>{{1},{2,3,6},{4,7},{5}}=>1 {{1,3},{2,7},{4,6},{5}}=>{{1},{2,3,6},{4},{5,7}}=>1 {{1,3},{2},{4,6,7},{5}}=>{{1,7},{2,3,6},{4},{5}}=>2 {{1,3},{2},{4,6},{5,7}}=>{{1},{2,3,6,7},{4},{5}}=>1 {{1,3},{2},{4,6},{5},{7}}=>{{1},{2,3,6},{4},{5},{7}}=>1 {{1,3,7},{2},{4},{5,6}}=>{{1,6},{2,3},{4,7},{5}}=>2 {{1,3},{2,7},{4},{5,6}}=>{{1,6},{2,3},{4},{5,7}}=>2 {{1,3},{2},{4,7},{5,6}}=>{{1,6},{2,3,7},{4},{5}}=>2 {{1,3},{2},{4},{5,6,7}}=>{{1,6,7},{2,3},{4},{5}}=>3 {{1,3},{2},{4},{5,6},{7}}=>{{1,6},{2,3},{4},{5},{7}}=>2 {{1,3,7},{2},{4},{5},{6}}=>{{1},{2,3},{4},{5,7},{6}}=>1 {{1,3},{2,7},{4},{5},{6}}=>{{1},{2,3},{4},{5},{6,7}}=>1 {{1,3},{2},{4,7},{5},{6}}=>{{1},{2,3},{4,7},{5},{6}}=>1 {{1,3},{2},{4},{5,7},{6}}=>{{1},{2,3,7},{4},{5},{6}}=>1 {{1,3},{2},{4},{5},{6,7}}=>{{1,7},{2,3},{4},{5},{6}}=>2 {{1,3},{2},{4},{5},{6},{7}}=>{{1},{2,3},{4},{5},{6},{7}}=>1 {{1,4,5,6,7},{2,3}}=>{{1,3,5,6,7},{2,4}}=>5 {{1,4,5,6},{2,3,7}}=>{{1,3,5,6},{2,4,7}}=>4 {{1,4,5,6},{2,3},{7}}=>{{1,3,5,6},{2,4},{7}}=>4 {{1,4,5,7},{2,3,6}}=>{{1,3,5},{2,4,6,7}}=>3 {{1,4,5},{2,3,6,7}}=>{{1,3,5,7},{2,4,6}}=>4 {{1,4,5},{2,3,6},{7}}=>{{1,3,5},{2,4,6},{7}}=>3 {{1,4,5,7},{2,3},{6}}=>{{1,3,5},{2,4,7},{6}}=>3 {{1,4,5},{2,3,7},{6}}=>{{1,3,5},{2,4},{6,7}}=>3 {{1,4,5},{2,3},{6,7}}=>{{1,3,5,7},{2,4},{6}}=>4 {{1,4,5},{2,3},{6},{7}}=>{{1,3,5},{2,4},{6},{7}}=>3 {{1,4,6,7},{2,3,5}}=>{{1,3,7},{2,4,5,6}}=>3 {{1,4,6},{2,3,5,7}}=>{{1,3},{2,4,5,6,7}}=>2 {{1,4,6},{2,3,5},{7}}=>{{1,3},{2,4,5,6},{7}}=>2 {{1,4,7},{2,3,5,6}}=>{{1,3,6},{2,4,5,7}}=>3 {{1,4},{2,3,5,6,7}}=>{{1,3,6,7},{2,4,5}}=>4 {{1,4},{2,3,5,6},{7}}=>{{1,3,6},{2,4,5},{7}}=>3 {{1,4,7},{2,3,5},{6}}=>{{1,3},{2,4,5},{6,7}}=>2 {{1,4},{2,3,5,7},{6}}=>{{1,3},{2,4,5,7},{6}}=>2 {{1,4},{2,3,5},{6,7}}=>{{1,3,7},{2,4,5},{6}}=>3 {{1,4},{2,3,5},{6},{7}}=>{{1,3},{2,4,5},{6},{7}}=>2 {{1,4,6,7},{2,3},{5}}=>{{1,3,7},{2,4,6},{5}}=>3 {{1,4,6},{2,3,7},{5}}=>{{1,3},{2,4,6},{5,7}}=>2 {{1,4,6},{2,3},{5,7}}=>{{1,3},{2,4,6,7},{5}}=>2 {{1,4,6},{2,3},{5},{7}}=>{{1,3},{2,4,6},{5},{7}}=>2 {{1,4,7},{2,3,6},{5}}=>{{1,3},{2,4},{5,6,7}}=>2 {{1,4},{2,3,6,7},{5}}=>{{1,3,7},{2,4},{5,6}}=>3 {{1,4},{2,3,6},{5,7}}=>{{1,3},{2,4,7},{5,6}}=>2 {{1,4},{2,3,6},{5},{7}}=>{{1,3},{2,4},{5,6},{7}}=>2 {{1,4,7},{2,3},{5,6}}=>{{1,3,6},{2,4,7},{5}}=>3 {{1,4},{2,3,7},{5,6}}=>{{1,3,6},{2,4},{5,7}}=>3 {{1,4},{2,3},{5,6,7}}=>{{1,3,6,7},{2,4},{5}}=>4 {{1,4},{2,3},{5,6},{7}}=>{{1,3,6},{2,4},{5},{7}}=>3 {{1,4,7},{2,3},{5},{6}}=>{{1,3},{2,4},{5,7},{6}}=>2 {{1,4},{2,3,7},{5},{6}}=>{{1,3},{2,4},{5},{6,7}}=>2 {{1,4},{2,3},{5,7},{6}}=>{{1,3},{2,4,7},{5},{6}}=>2 {{1,4},{2,3},{5},{6,7}}=>{{1,3,7},{2,4},{5},{6}}=>3 {{1,4},{2,3},{5},{6},{7}}=>{{1,3},{2,4},{5},{6},{7}}=>2 {{1,5,6,7},{2,3,4}}=>{{1,3,4,6,7},{2,5}}=>5 {{1,5,6},{2,3,4,7}}=>{{1,3,4,6},{2,5,7}}=>4 {{1,5,6},{2,3,4},{7}}=>{{1,3,4,6},{2,5},{7}}=>4 {{1,5,7},{2,3,4,6}}=>{{1,3,4},{2,5,6,7}}=>3 {{1,5},{2,3,4,6,7}}=>{{1,3,4,7},{2,5,6}}=>4 {{1,5},{2,3,4,6},{7}}=>{{1,3,4},{2,5,6},{7}}=>3 {{1,5,7},{2,3,4},{6}}=>{{1,3,4},{2,5,7},{6}}=>3 {{1,5},{2,3,4,7},{6}}=>{{1,3,4},{2,5},{6,7}}=>3 {{1,5},{2,3,4},{6,7}}=>{{1,3,4,7},{2,5},{6}}=>4 {{1,5},{2,3,4},{6},{7}}=>{{1,3,4},{2,5},{6},{7}}=>3 {{1,6,7},{2,3,4,5}}=>{{1,3,4,5,7},{2,6}}=>5 {{1,6},{2,3,4,5,7}}=>{{1,3,4,5},{2,6,7}}=>4 {{1,6},{2,3,4,5},{7}}=>{{1,3,4,5},{2,6},{7}}=>4 {{1,7},{2,3,4,5,6}}=>{{1,3,4,5,6},{2,7}}=>5 {{1},{2,3,4,5,6,7}}=>{{1,3,4,5,6,7},{2}}=>6 {{1},{2,3,4,5,6},{7}}=>{{1,3,4,5,6},{2},{7}}=>5 {{1,7},{2,3,4,5},{6}}=>{{1,3,4,5},{2},{6,7}}=>4 {{1},{2,3,4,5,7},{6}}=>{{1,3,4,5},{2,7},{6}}=>4 {{1},{2,3,4,5},{6,7}}=>{{1,3,4,5,7},{2},{6}}=>5 {{1},{2,3,4,5},{6},{7}}=>{{1,3,4,5},{2},{6},{7}}=>4 {{1,6,7},{2,3,4},{5}}=>{{1,3,4,7},{2},{5,6}}=>4 {{1,6},{2,3,4,7},{5}}=>{{1,3,4},{2},{5,6,7}}=>3 {{1,6},{2,3,4},{5,7}}=>{{1,3,4},{2,7},{5,6}}=>3 {{1,6},{2,3,4},{5},{7}}=>{{1,3,4},{2},{5,6},{7}}=>3 {{1,7},{2,3,4,6},{5}}=>{{1,3,4},{2,6},{5,7}}=>3 {{1},{2,3,4,6,7},{5}}=>{{1,3,4,7},{2,6},{5}}=>4 {{1},{2,3,4,6},{5,7}}=>{{1,3,4},{2,6,7},{5}}=>3 {{1},{2,3,4,6},{5},{7}}=>{{1,3,4},{2,6},{5},{7}}=>3 {{1,7},{2,3,4},{5,6}}=>{{1,3,4,6},{2},{5,7}}=>4 {{1},{2,3,4,7},{5,6}}=>{{1,3,4,6},{2,7},{5}}=>4 {{1},{2,3,4},{5,6,7}}=>{{1,3,4,6,7},{2},{5}}=>5 {{1},{2,3,4},{5,6},{7}}=>{{1,3,4,6},{2},{5},{7}}=>4 {{1,7},{2,3,4},{5},{6}}=>{{1,3,4},{2},{5},{6,7}}=>3 {{1},{2,3,4,7},{5},{6}}=>{{1,3,4},{2},{5,7},{6}}=>3 {{1},{2,3,4},{5,7},{6}}=>{{1,3,4},{2,7},{5},{6}}=>3 {{1},{2,3,4},{5},{6,7}}=>{{1,3,4,7},{2},{5},{6}}=>4 {{1},{2,3,4},{5},{6},{7}}=>{{1,3,4},{2},{5},{6},{7}}=>3 {{1,5,6,7},{2,3},{4}}=>{{1,3,6,7},{2},{4,5}}=>4 {{1,5,6},{2,3,7},{4}}=>{{1,3,6},{2},{4,5,7}}=>3 {{1,5,6},{2,3},{4,7}}=>{{1,3,6},{2,7},{4,5}}=>3 {{1,5,6},{2,3},{4},{7}}=>{{1,3,6},{2},{4,5},{7}}=>3 {{1,5,7},{2,3,6},{4}}=>{{1,3},{2,7},{4,5,6}}=>2 {{1,5},{2,3,6,7},{4}}=>{{1,3,7},{2},{4,5,6}}=>3 {{1,5},{2,3,6},{4,7}}=>{{1,3},{2},{4,5,6,7}}=>2 {{1,5},{2,3,6},{4},{7}}=>{{1,3},{2},{4,5,6},{7}}=>2 {{1,5,7},{2,3},{4,6}}=>{{1,3},{2,6,7},{4,5}}=>2 {{1,5},{2,3,7},{4,6}}=>{{1,3},{2,6},{4,5,7}}=>2 {{1,5},{2,3},{4,6,7}}=>{{1,3,7},{2,6},{4,5}}=>3 {{1,5},{2,3},{4,6},{7}}=>{{1,3},{2,6},{4,5},{7}}=>2 {{1,5,7},{2,3},{4},{6}}=>{{1,3},{2,7},{4,5},{6}}=>2 {{1,5},{2,3,7},{4},{6}}=>{{1,3},{2},{4,5},{6,7}}=>2 {{1,5},{2,3},{4,7},{6}}=>{{1,3},{2},{4,5,7},{6}}=>2 {{1,5},{2,3},{4},{6,7}}=>{{1,3,7},{2},{4,5},{6}}=>3 {{1,5},{2,3},{4},{6},{7}}=>{{1,3},{2},{4,5},{6},{7}}=>2 {{1,6,7},{2,3,5},{4}}=>{{1,3,7},{2,5},{4,6}}=>3 {{1,6},{2,3,5,7},{4}}=>{{1,3},{2,5,7},{4,6}}=>2 {{1,6},{2,3,5},{4,7}}=>{{1,3},{2,5},{4,6,7}}=>2 {{1,6},{2,3,5},{4},{7}}=>{{1,3},{2,5},{4,6},{7}}=>2 {{1,7},{2,3,5,6},{4}}=>{{1,3,6},{2,5},{4,7}}=>3 {{1},{2,3,5,6,7},{4}}=>{{1,3,6,7},{2,5},{4}}=>4 {{1},{2,3,5,6},{4,7}}=>{{1,3,6},{2,5,7},{4}}=>3 {{1},{2,3,5,6},{4},{7}}=>{{1,3,6},{2,5},{4},{7}}=>3 {{1,7},{2,3,5},{4,6}}=>{{1,3},{2,5,6},{4,7}}=>2 {{1},{2,3,5,7},{4,6}}=>{{1,3},{2,5,6,7},{4}}=>2 {{1},{2,3,5},{4,6,7}}=>{{1,3,7},{2,5,6},{4}}=>3 {{1},{2,3,5},{4,6},{7}}=>{{1,3},{2,5,6},{4},{7}}=>2 {{1,7},{2,3,5},{4},{6}}=>{{1,3},{2,5},{4},{6,7}}=>2 {{1},{2,3,5,7},{4},{6}}=>{{1,3},{2,5,7},{4},{6}}=>2 {{1},{2,3,5},{4,7},{6}}=>{{1,3},{2,5},{4,7},{6}}=>2 {{1},{2,3,5},{4},{6,7}}=>{{1,3,7},{2,5},{4},{6}}=>3 {{1},{2,3,5},{4},{6},{7}}=>{{1,3},{2,5},{4},{6},{7}}=>2 {{1,6,7},{2,3},{4,5}}=>{{1,3,5,7},{2},{4,6}}=>4 {{1,6},{2,3,7},{4,5}}=>{{1,3,5},{2},{4,6,7}}=>3 {{1,6},{2,3},{4,5,7}}=>{{1,3,5},{2,7},{4,6}}=>3 {{1,6},{2,3},{4,5},{7}}=>{{1,3,5},{2},{4,6},{7}}=>3 {{1,7},{2,3,6},{4,5}}=>{{1,3,5},{2,6},{4,7}}=>3 {{1},{2,3,6,7},{4,5}}=>{{1,3,5,7},{2,6},{4}}=>4 {{1},{2,3,6},{4,5,7}}=>{{1,3,5},{2,6,7},{4}}=>3 {{1},{2,3,6},{4,5},{7}}=>{{1,3,5},{2,6},{4},{7}}=>3 {{1,7},{2,3},{4,5,6}}=>{{1,3,5,6},{2},{4,7}}=>4 {{1},{2,3,7},{4,5,6}}=>{{1,3,5,6},{2,7},{4}}=>4 {{1},{2,3},{4,5,6,7}}=>{{1,3,5,6,7},{2},{4}}=>5 {{1},{2,3},{4,5,6},{7}}=>{{1,3,5,6},{2},{4},{7}}=>4 {{1,7},{2,3},{4,5},{6}}=>{{1,3,5},{2},{4},{6,7}}=>3 {{1},{2,3,7},{4,5},{6}}=>{{1,3,5},{2},{4,7},{6}}=>3 {{1},{2,3},{4,5,7},{6}}=>{{1,3,5},{2,7},{4},{6}}=>3 {{1},{2,3},{4,5},{6,7}}=>{{1,3,5,7},{2},{4},{6}}=>4 {{1},{2,3},{4,5},{6},{7}}=>{{1,3,5},{2},{4},{6},{7}}=>3 {{1,6,7},{2,3},{4},{5}}=>{{1,3,7},{2},{4},{5,6}}=>3 {{1,6},{2,3,7},{4},{5}}=>{{1,3},{2},{4},{5,6,7}}=>2 {{1,6},{2,3},{4,7},{5}}=>{{1,3},{2},{4,7},{5,6}}=>2 {{1,6},{2,3},{4},{5,7}}=>{{1,3},{2,7},{4},{5,6}}=>2 {{1,6},{2,3},{4},{5},{7}}=>{{1,3},{2},{4},{5,6},{7}}=>2 {{1,7},{2,3,6},{4},{5}}=>{{1,3},{2},{4,6},{5,7}}=>2 {{1},{2,3,6,7},{4},{5}}=>{{1,3,7},{2},{4,6},{5}}=>3 {{1},{2,3,6},{4,7},{5}}=>{{1,3},{2},{4,6,7},{5}}=>2 {{1},{2,3,6},{4},{5,7}}=>{{1,3},{2,7},{4,6},{5}}=>2 {{1},{2,3,6},{4},{5},{7}}=>{{1,3},{2},{4,6},{5},{7}}=>2 {{1,7},{2,3},{4,6},{5}}=>{{1,3},{2,6},{4},{5,7}}=>2 {{1},{2,3,7},{4,6},{5}}=>{{1,3},{2,6},{4,7},{5}}=>2 {{1},{2,3},{4,6,7},{5}}=>{{1,3,7},{2,6},{4},{5}}=>3 {{1},{2,3},{4,6},{5,7}}=>{{1,3},{2,6,7},{4},{5}}=>2 {{1},{2,3},{4,6},{5},{7}}=>{{1,3},{2,6},{4},{5},{7}}=>2 {{1,7},{2,3},{4},{5,6}}=>{{1,3,6},{2},{4},{5,7}}=>3 {{1},{2,3,7},{4},{5,6}}=>{{1,3,6},{2},{4,7},{5}}=>3 {{1},{2,3},{4,7},{5,6}}=>{{1,3,6},{2,7},{4},{5}}=>3 {{1},{2,3},{4},{5,6,7}}=>{{1,3,6,7},{2},{4},{5}}=>4 {{1},{2,3},{4},{5,6},{7}}=>{{1,3,6},{2},{4},{5},{7}}=>3 {{1,7},{2,3},{4},{5},{6}}=>{{1,3},{2},{4},{5},{6,7}}=>2 {{1},{2,3,7},{4},{5},{6}}=>{{1,3},{2},{4},{5,7},{6}}=>2 {{1},{2,3},{4,7},{5},{6}}=>{{1,3},{2},{4,7},{5},{6}}=>2 {{1},{2,3},{4},{5,7},{6}}=>{{1,3},{2,7},{4},{5},{6}}=>2 {{1},{2,3},{4},{5},{6,7}}=>{{1,3,7},{2},{4},{5},{6}}=>3 {{1},{2,3},{4},{5},{6},{7}}=>{{1,3},{2},{4},{5},{6},{7}}=>2 {{1,4,5,6,7},{2},{3}}=>{{1,5,6,7},{2},{3,4}}=>4 {{1,4,5,6},{2,7},{3}}=>{{1,5,6},{2},{3,4,7}}=>3 {{1,4,5,6},{2},{3,7}}=>{{1,5,6},{2,7},{3,4}}=>3 {{1,4,5,6},{2},{3},{7}}=>{{1,5,6},{2},{3,4},{7}}=>3 {{1,4,5,7},{2,6},{3}}=>{{1,5},{2,7},{3,4,6}}=>2 {{1,4,5},{2,6,7},{3}}=>{{1,5,7},{2},{3,4,6}}=>3 {{1,4,5},{2,6},{3,7}}=>{{1,5},{2},{3,4,6,7}}=>2 {{1,4,5},{2,6},{3},{7}}=>{{1,5},{2},{3,4,6},{7}}=>2 {{1,4,5,7},{2},{3,6}}=>{{1,5},{2,6,7},{3,4}}=>2 {{1,4,5},{2,7},{3,6}}=>{{1,5},{2,6},{3,4,7}}=>2 {{1,4,5},{2},{3,6,7}}=>{{1,5,7},{2,6},{3,4}}=>3 {{1,4,5},{2},{3,6},{7}}=>{{1,5},{2,6},{3,4},{7}}=>2 {{1,4,5,7},{2},{3},{6}}=>{{1,5},{2,7},{3,4},{6}}=>2 {{1,4,5},{2,7},{3},{6}}=>{{1,5},{2},{3,4},{6,7}}=>2 {{1,4,5},{2},{3,7},{6}}=>{{1,5},{2},{3,4,7},{6}}=>2 {{1,4,5},{2},{3},{6,7}}=>{{1,5,7},{2},{3,4},{6}}=>3 {{1,4,5},{2},{3},{6},{7}}=>{{1,5},{2},{3,4},{6},{7}}=>2 {{1,4,6,7},{2,5},{3}}=>{{1,7},{2,6},{3,4,5}}=>2 {{1,4,6},{2,5,7},{3}}=>{{1},{2,6,7},{3,4,5}}=>1 {{1,4,6},{2,5},{3,7}}=>{{1},{2,6},{3,4,5,7}}=>1 {{1,4,6},{2,5},{3},{7}}=>{{1},{2,6},{3,4,5},{7}}=>1 {{1,4,7},{2,5,6},{3}}=>{{1,6},{2,7},{3,4,5}}=>2 {{1,4},{2,5,6,7},{3}}=>{{1,6,7},{2},{3,4,5}}=>3 {{1,4},{2,5,6},{3,7}}=>{{1,6},{2},{3,4,5,7}}=>2 {{1,4},{2,5,6},{3},{7}}=>{{1,6},{2},{3,4,5},{7}}=>2 {{1,4,7},{2,5},{3,6}}=>{{1},{2},{3,4,5,6,7}}=>1 {{1,4},{2,5,7},{3,6}}=>{{1},{2,7},{3,4,5,6}}=>1 {{1,4},{2,5},{3,6,7}}=>{{1,7},{2},{3,4,5,6}}=>2 {{1,4},{2,5},{3,6},{7}}=>{{1},{2},{3,4,5,6},{7}}=>1 {{1,4,7},{2,5},{3},{6}}=>{{1},{2},{3,4,5,7},{6}}=>1 {{1,4},{2,5,7},{3},{6}}=>{{1},{2,7},{3,4,5},{6}}=>1 {{1,4},{2,5},{3,7},{6}}=>{{1},{2},{3,4,5},{6,7}}=>1 {{1,4},{2,5},{3},{6,7}}=>{{1,7},{2},{3,4,5},{6}}=>2 {{1,4},{2,5},{3},{6},{7}}=>{{1},{2},{3,4,5},{6},{7}}=>1 {{1,4,6,7},{2},{3,5}}=>{{1,7},{2,5,6},{3,4}}=>2 {{1,4,6},{2,7},{3,5}}=>{{1},{2,5,6},{3,4,7}}=>1 {{1,4,6},{2},{3,5,7}}=>{{1},{2,5,6,7},{3,4}}=>1 {{1,4,6},{2},{3,5},{7}}=>{{1},{2,5,6},{3,4},{7}}=>1 {{1,4,7},{2,6},{3,5}}=>{{1},{2,5},{3,4,6,7}}=>1 {{1,4},{2,6,7},{3,5}}=>{{1,7},{2,5},{3,4,6}}=>2 {{1,4},{2,6},{3,5,7}}=>{{1},{2,5,7},{3,4,6}}=>1 {{1,4},{2,6},{3,5},{7}}=>{{1},{2,5},{3,4,6},{7}}=>1 {{1,4,7},{2},{3,5,6}}=>{{1,6},{2,5,7},{3,4}}=>2 {{1,4},{2,7},{3,5,6}}=>{{1,6},{2,5},{3,4,7}}=>2 {{1,4},{2},{3,5,6,7}}=>{{1,6,7},{2,5},{3,4}}=>3 {{1,4},{2},{3,5,6},{7}}=>{{1,6},{2,5},{3,4},{7}}=>2 {{1,4,7},{2},{3,5},{6}}=>{{1},{2,5},{3,4,7},{6}}=>1 {{1,4},{2,7},{3,5},{6}}=>{{1},{2,5},{3,4},{6,7}}=>1 {{1,4},{2},{3,5,7},{6}}=>{{1},{2,5,7},{3,4},{6}}=>1 {{1,4},{2},{3,5},{6,7}}=>{{1,7},{2,5},{3,4},{6}}=>2 {{1,4},{2},{3,5},{6},{7}}=>{{1},{2,5},{3,4},{6},{7}}=>1 {{1,4,6,7},{2},{3},{5}}=>{{1,7},{2,6},{3,4},{5}}=>2 {{1,4,6},{2,7},{3},{5}}=>{{1},{2,6},{3,4},{5,7}}=>1 {{1,4,6},{2},{3,7},{5}}=>{{1},{2,6},{3,4,7},{5}}=>1 {{1,4,6},{2},{3},{5,7}}=>{{1},{2,6,7},{3,4},{5}}=>1 {{1,4,6},{2},{3},{5},{7}}=>{{1},{2,6},{3,4},{5},{7}}=>1 {{1,4,7},{2,6},{3},{5}}=>{{1},{2},{3,4,7},{5,6}}=>1 {{1,4},{2,6,7},{3},{5}}=>{{1,7},{2},{3,4},{5,6}}=>2 {{1,4},{2,6},{3,7},{5}}=>{{1},{2},{3,4},{5,6,7}}=>1 {{1,4},{2,6},{3},{5,7}}=>{{1},{2,7},{3,4},{5,6}}=>1 {{1,4},{2,6},{3},{5},{7}}=>{{1},{2},{3,4},{5,6},{7}}=>1 {{1,4,7},{2},{3,6},{5}}=>{{1},{2},{3,4,6,7},{5}}=>1 {{1,4},{2,7},{3,6},{5}}=>{{1},{2},{3,4,6},{5,7}}=>1 {{1,4},{2},{3,6,7},{5}}=>{{1,7},{2},{3,4,6},{5}}=>2 {{1,4},{2},{3,6},{5,7}}=>{{1},{2,7},{3,4,6},{5}}=>1 {{1,4},{2},{3,6},{5},{7}}=>{{1},{2},{3,4,6},{5},{7}}=>1 {{1,4,7},{2},{3},{5,6}}=>{{1,6},{2,7},{3,4},{5}}=>2 {{1,4},{2,7},{3},{5,6}}=>{{1,6},{2},{3,4},{5,7}}=>2 {{1,4},{2},{3,7},{5,6}}=>{{1,6},{2},{3,4,7},{5}}=>2 {{1,4},{2},{3},{5,6,7}}=>{{1,6,7},{2},{3,4},{5}}=>3 {{1,4},{2},{3},{5,6},{7}}=>{{1,6},{2},{3,4},{5},{7}}=>2 {{1,4,7},{2},{3},{5},{6}}=>{{1},{2},{3,4,7},{5},{6}}=>1 {{1,4},{2,7},{3},{5},{6}}=>{{1},{2},{3,4},{5},{6,7}}=>1 {{1,4},{2},{3,7},{5},{6}}=>{{1},{2},{3,4},{5,7},{6}}=>1 {{1,4},{2},{3},{5,7},{6}}=>{{1},{2,7},{3,4},{5},{6}}=>1 {{1,4},{2},{3},{5},{6,7}}=>{{1,7},{2},{3,4},{5},{6}}=>2 {{1,4},{2},{3},{5},{6},{7}}=>{{1},{2},{3,4},{5},{6},{7}}=>1 {{1,5,6,7},{2,4},{3}}=>{{1,6,7},{2,4},{3,5}}=>3 {{1,5,6},{2,4,7},{3}}=>{{1,6},{2,4,7},{3,5}}=>2 {{1,5,6},{2,4},{3,7}}=>{{1,6},{2,4},{3,5,7}}=>2 {{1,5,6},{2,4},{3},{7}}=>{{1,6},{2,4},{3,5},{7}}=>2 {{1,5,7},{2,4,6},{3}}=>{{1},{2,4,6,7},{3,5}}=>1 {{1,5},{2,4,6,7},{3}}=>{{1,7},{2,4,6},{3,5}}=>2 {{1,5},{2,4,6},{3,7}}=>{{1},{2,4,6},{3,5,7}}=>1 {{1,5},{2,4,6},{3},{7}}=>{{1},{2,4,6},{3,5},{7}}=>1 {{1,5,7},{2,4},{3,6}}=>{{1},{2,4,7},{3,5,6}}=>1 {{1,5},{2,4,7},{3,6}}=>{{1},{2,4},{3,5,6,7}}=>1 {{1,5},{2,4},{3,6,7}}=>{{1,7},{2,4},{3,5,6}}=>2 {{1,5},{2,4},{3,6},{7}}=>{{1},{2,4},{3,5,6},{7}}=>1 {{1,5,7},{2,4},{3},{6}}=>{{1},{2,4,7},{3,5},{6}}=>1 {{1,5},{2,4,7},{3},{6}}=>{{1},{2,4},{3,5,7},{6}}=>1 {{1,5},{2,4},{3,7},{6}}=>{{1},{2,4},{3,5},{6,7}}=>1 {{1,5},{2,4},{3},{6,7}}=>{{1,7},{2,4},{3,5},{6}}=>2 {{1,5},{2,4},{3},{6},{7}}=>{{1},{2,4},{3,5},{6},{7}}=>1 {{1,6,7},{2,4,5},{3}}=>{{1,5,7},{2,4},{3,6}}=>3 {{1,6},{2,4,5,7},{3}}=>{{1,5},{2,4,7},{3,6}}=>2 {{1,6},{2,4,5},{3,7}}=>{{1,5},{2,4},{3,6,7}}=>2 {{1,6},{2,4,5},{3},{7}}=>{{1,5},{2,4},{3,6},{7}}=>2 {{1,7},{2,4,5,6},{3}}=>{{1,5,6},{2,4},{3,7}}=>3 {{1},{2,4,5,6,7},{3}}=>{{1,5,6,7},{2,4},{3}}=>4 {{1},{2,4,5,6},{3,7}}=>{{1,5,6},{2,4,7},{3}}=>3 {{1},{2,4,5,6},{3},{7}}=>{{1,5,6},{2,4},{3},{7}}=>3 {{1,7},{2,4,5},{3,6}}=>{{1,5},{2,4,6},{3,7}}=>2 {{1},{2,4,5,7},{3,6}}=>{{1,5},{2,4,6,7},{3}}=>2 {{1},{2,4,5},{3,6,7}}=>{{1,5,7},{2,4,6},{3}}=>3 {{1},{2,4,5},{3,6},{7}}=>{{1,5},{2,4,6},{3},{7}}=>2 {{1,7},{2,4,5},{3},{6}}=>{{1,5},{2,4},{3},{6,7}}=>2 {{1},{2,4,5,7},{3},{6}}=>{{1,5},{2,4,7},{3},{6}}=>2 {{1},{2,4,5},{3,7},{6}}=>{{1,5},{2,4},{3,7},{6}}=>2 {{1},{2,4,5},{3},{6,7}}=>{{1,5,7},{2,4},{3},{6}}=>3 {{1},{2,4,5},{3},{6},{7}}=>{{1,5},{2,4},{3},{6},{7}}=>2 {{1,6,7},{2,4},{3,5}}=>{{1,7},{2,4,5},{3,6}}=>2 {{1,6},{2,4,7},{3,5}}=>{{1},{2,4,5},{3,6,7}}=>1 {{1,6},{2,4},{3,5,7}}=>{{1},{2,4,5,7},{3,6}}=>1 {{1,6},{2,4},{3,5},{7}}=>{{1},{2,4,5},{3,6},{7}}=>1 {{1,7},{2,4,6},{3,5}}=>{{1},{2,4,5,6},{3,7}}=>1 {{1},{2,4,6,7},{3,5}}=>{{1,7},{2,4,5,6},{3}}=>2 {{1},{2,4,6},{3,5,7}}=>{{1},{2,4,5,6,7},{3}}=>1 {{1},{2,4,6},{3,5},{7}}=>{{1},{2,4,5,6},{3},{7}}=>1 {{1,7},{2,4},{3,5,6}}=>{{1,6},{2,4,5},{3,7}}=>2 {{1},{2,4,7},{3,5,6}}=>{{1,6},{2,4,5,7},{3}}=>2 {{1},{2,4},{3,5,6,7}}=>{{1,6,7},{2,4,5},{3}}=>3 {{1},{2,4},{3,5,6},{7}}=>{{1,6},{2,4,5},{3},{7}}=>2 {{1,7},{2,4},{3,5},{6}}=>{{1},{2,4,5},{3},{6,7}}=>1 {{1},{2,4,7},{3,5},{6}}=>{{1},{2,4,5},{3,7},{6}}=>1 {{1},{2,4},{3,5,7},{6}}=>{{1},{2,4,5,7},{3},{6}}=>1 {{1},{2,4},{3,5},{6,7}}=>{{1,7},{2,4,5},{3},{6}}=>2 {{1},{2,4},{3,5},{6},{7}}=>{{1},{2,4,5},{3},{6},{7}}=>1 {{1,6,7},{2,4},{3},{5}}=>{{1,7},{2,4},{3},{5,6}}=>2 {{1,6},{2,4,7},{3},{5}}=>{{1},{2,4},{3,7},{5,6}}=>1 {{1,6},{2,4},{3,7},{5}}=>{{1},{2,4},{3},{5,6,7}}=>1 {{1,6},{2,4},{3},{5,7}}=>{{1},{2,4,7},{3},{5,6}}=>1 {{1,6},{2,4},{3},{5},{7}}=>{{1},{2,4},{3},{5,6},{7}}=>1 {{1,7},{2,4,6},{3},{5}}=>{{1},{2,4,6},{3},{5,7}}=>1 {{1},{2,4,6,7},{3},{5}}=>{{1,7},{2,4,6},{3},{5}}=>2 {{1},{2,4,6},{3,7},{5}}=>{{1},{2,4,6},{3,7},{5}}=>1 {{1},{2,4,6},{3},{5,7}}=>{{1},{2,4,6,7},{3},{5}}=>1 {{1},{2,4,6},{3},{5},{7}}=>{{1},{2,4,6},{3},{5},{7}}=>1 {{1,7},{2,4},{3,6},{5}}=>{{1},{2,4},{3,6},{5,7}}=>1 {{1},{2,4,7},{3,6},{5}}=>{{1},{2,4},{3,6,7},{5}}=>1 {{1},{2,4},{3,6,7},{5}}=>{{1,7},{2,4},{3,6},{5}}=>2 {{1},{2,4},{3,6},{5,7}}=>{{1},{2,4,7},{3,6},{5}}=>1 {{1},{2,4},{3,6},{5},{7}}=>{{1},{2,4},{3,6},{5},{7}}=>1 {{1,7},{2,4},{3},{5,6}}=>{{1,6},{2,4},{3},{5,7}}=>2 {{1},{2,4,7},{3},{5,6}}=>{{1,6},{2,4,7},{3},{5}}=>2 {{1},{2,4},{3,7},{5,6}}=>{{1,6},{2,4},{3,7},{5}}=>2 {{1},{2,4},{3},{5,6,7}}=>{{1,6,7},{2,4},{3},{5}}=>3 {{1},{2,4},{3},{5,6},{7}}=>{{1,6},{2,4},{3},{5},{7}}=>2 {{1,7},{2,4},{3},{5},{6}}=>{{1},{2,4},{3},{5},{6,7}}=>1 {{1},{2,4,7},{3},{5},{6}}=>{{1},{2,4},{3,7},{5},{6}}=>1 {{1},{2,4},{3,7},{5},{6}}=>{{1},{2,4},{3},{5,7},{6}}=>1 {{1},{2,4},{3},{5,7},{6}}=>{{1},{2,4,7},{3},{5},{6}}=>1 {{1},{2,4},{3},{5},{6,7}}=>{{1,7},{2,4},{3},{5},{6}}=>2 {{1},{2,4},{3},{5},{6},{7}}=>{{1},{2,4},{3},{5},{6},{7}}=>1 {{1,5,6,7},{2},{3,4}}=>{{1,4,6,7},{2},{3,5}}=>4 {{1,5,6},{2,7},{3,4}}=>{{1,4,6},{2},{3,5,7}}=>3 {{1,5,6},{2},{3,4,7}}=>{{1,4,6},{2,7},{3,5}}=>3 {{1,5,6},{2},{3,4},{7}}=>{{1,4,6},{2},{3,5},{7}}=>3 {{1,5,7},{2,6},{3,4}}=>{{1,4},{2,7},{3,5,6}}=>2 {{1,5},{2,6,7},{3,4}}=>{{1,4,7},{2},{3,5,6}}=>3 {{1,5},{2,6},{3,4,7}}=>{{1,4},{2},{3,5,6,7}}=>2 {{1,5},{2,6},{3,4},{7}}=>{{1,4},{2},{3,5,6},{7}}=>2 {{1,5,7},{2},{3,4,6}}=>{{1,4},{2,6,7},{3,5}}=>2 {{1,5},{2,7},{3,4,6}}=>{{1,4},{2,6},{3,5,7}}=>2 {{1,5},{2},{3,4,6,7}}=>{{1,4,7},{2,6},{3,5}}=>3 {{1,5},{2},{3,4,6},{7}}=>{{1,4},{2,6},{3,5},{7}}=>2 {{1,5,7},{2},{3,4},{6}}=>{{1,4},{2,7},{3,5},{6}}=>2 {{1,5},{2,7},{3,4},{6}}=>{{1,4},{2},{3,5},{6,7}}=>2 {{1,5},{2},{3,4,7},{6}}=>{{1,4},{2},{3,5,7},{6}}=>2 {{1,5},{2},{3,4},{6,7}}=>{{1,4,7},{2},{3,5},{6}}=>3 {{1,5},{2},{3,4},{6},{7}}=>{{1,4},{2},{3,5},{6},{7}}=>2 {{1,6,7},{2,5},{3,4}}=>{{1,4,7},{2,5},{3,6}}=>3 {{1,6},{2,5,7},{3,4}}=>{{1,4},{2,5,7},{3,6}}=>2 {{1,6},{2,5},{3,4,7}}=>{{1,4},{2,5},{3,6,7}}=>2 {{1,6},{2,5},{3,4},{7}}=>{{1,4},{2,5},{3,6},{7}}=>2 {{1,7},{2,5,6},{3,4}}=>{{1,4,6},{2,5},{3,7}}=>3 {{1},{2,5,6,7},{3,4}}=>{{1,4,6,7},{2,5},{3}}=>4 {{1},{2,5,6},{3,4,7}}=>{{1,4,6},{2,5,7},{3}}=>3 {{1},{2,5,6},{3,4},{7}}=>{{1,4,6},{2,5},{3},{7}}=>3 {{1,7},{2,5},{3,4,6}}=>{{1,4},{2,5,6},{3,7}}=>2 {{1},{2,5,7},{3,4,6}}=>{{1,4},{2,5,6,7},{3}}=>2 {{1},{2,5},{3,4,6,7}}=>{{1,4,7},{2,5,6},{3}}=>3 {{1},{2,5},{3,4,6},{7}}=>{{1,4},{2,5,6},{3},{7}}=>2 {{1,7},{2,5},{3,4},{6}}=>{{1,4},{2,5},{3},{6,7}}=>2 {{1},{2,5,7},{3,4},{6}}=>{{1,4},{2,5,7},{3},{6}}=>2 {{1},{2,5},{3,4,7},{6}}=>{{1,4},{2,5},{3,7},{6}}=>2 {{1},{2,5},{3,4},{6,7}}=>{{1,4,7},{2,5},{3},{6}}=>3 {{1},{2,5},{3,4},{6},{7}}=>{{1,4},{2,5},{3},{6},{7}}=>2 {{1,6,7},{2},{3,4,5}}=>{{1,4,5,7},{2},{3,6}}=>4 {{1,6},{2,7},{3,4,5}}=>{{1,4,5},{2},{3,6,7}}=>3 {{1,6},{2},{3,4,5,7}}=>{{1,4,5},{2,7},{3,6}}=>3 {{1,6},{2},{3,4,5},{7}}=>{{1,4,5},{2},{3,6},{7}}=>3 {{1,7},{2,6},{3,4,5}}=>{{1,4,5},{2,6},{3,7}}=>3 {{1},{2,6,7},{3,4,5}}=>{{1,4,5,7},{2,6},{3}}=>4 {{1},{2,6},{3,4,5,7}}=>{{1,4,5},{2,6,7},{3}}=>3 {{1},{2,6},{3,4,5},{7}}=>{{1,4,5},{2,6},{3},{7}}=>3 {{1,7},{2},{3,4,5,6}}=>{{1,4,5,6},{2},{3,7}}=>4 {{1},{2,7},{3,4,5,6}}=>{{1,4,5,6},{2,7},{3}}=>4 {{1},{2},{3,4,5,6,7}}=>{{1,4,5,6,7},{2},{3}}=>5 {{1},{2},{3,4,5,6},{7}}=>{{1,4,5,6},{2},{3},{7}}=>4 {{1,7},{2},{3,4,5},{6}}=>{{1,4,5},{2},{3},{6,7}}=>3 {{1},{2,7},{3,4,5},{6}}=>{{1,4,5},{2},{3,7},{6}}=>3 {{1},{2},{3,4,5,7},{6}}=>{{1,4,5},{2,7},{3},{6}}=>3 {{1},{2},{3,4,5},{6,7}}=>{{1,4,5,7},{2},{3},{6}}=>4 {{1},{2},{3,4,5},{6},{7}}=>{{1,4,5},{2},{3},{6},{7}}=>3 {{1,6,7},{2},{3,4},{5}}=>{{1,4,7},{2},{3},{5,6}}=>3 {{1,6},{2,7},{3,4},{5}}=>{{1,4},{2},{3},{5,6,7}}=>2 {{1,6},{2},{3,4,7},{5}}=>{{1,4},{2},{3,7},{5,6}}=>2 {{1,6},{2},{3,4},{5,7}}=>{{1,4},{2,7},{3},{5,6}}=>2 {{1,6},{2},{3,4},{5},{7}}=>{{1,4},{2},{3},{5,6},{7}}=>2 {{1,7},{2,6},{3,4},{5}}=>{{1,4},{2},{3,6},{5,7}}=>2 {{1},{2,6,7},{3,4},{5}}=>{{1,4,7},{2},{3,6},{5}}=>3 {{1},{2,6},{3,4,7},{5}}=>{{1,4},{2},{3,6,7},{5}}=>2 {{1},{2,6},{3,4},{5,7}}=>{{1,4},{2,7},{3,6},{5}}=>2 {{1},{2,6},{3,4},{5},{7}}=>{{1,4},{2},{3,6},{5},{7}}=>2 {{1,7},{2},{3,4,6},{5}}=>{{1,4},{2,6},{3},{5,7}}=>2 {{1},{2,7},{3,4,6},{5}}=>{{1,4},{2,6},{3,7},{5}}=>2 {{1},{2},{3,4,6,7},{5}}=>{{1,4,7},{2,6},{3},{5}}=>3 {{1},{2},{3,4,6},{5,7}}=>{{1,4},{2,6,7},{3},{5}}=>2 {{1},{2},{3,4,6},{5},{7}}=>{{1,4},{2,6},{3},{5},{7}}=>2 {{1,7},{2},{3,4},{5,6}}=>{{1,4,6},{2},{3},{5,7}}=>3 {{1},{2,7},{3,4},{5,6}}=>{{1,4,6},{2},{3,7},{5}}=>3 {{1},{2},{3,4,7},{5,6}}=>{{1,4,6},{2,7},{3},{5}}=>3 {{1},{2},{3,4},{5,6,7}}=>{{1,4,6,7},{2},{3},{5}}=>4 {{1},{2},{3,4},{5,6},{7}}=>{{1,4,6},{2},{3},{5},{7}}=>3 {{1,7},{2},{3,4},{5},{6}}=>{{1,4},{2},{3},{5},{6,7}}=>2 {{1},{2,7},{3,4},{5},{6}}=>{{1,4},{2},{3},{5,7},{6}}=>2 {{1},{2},{3,4,7},{5},{6}}=>{{1,4},{2},{3,7},{5},{6}}=>2 {{1},{2},{3,4},{5,7},{6}}=>{{1,4},{2,7},{3},{5},{6}}=>2 {{1},{2},{3,4},{5},{6,7}}=>{{1,4,7},{2},{3},{5},{6}}=>3 {{1},{2},{3,4},{5},{6},{7}}=>{{1,4},{2},{3},{5},{6},{7}}=>2 {{1,5,6,7},{2},{3},{4}}=>{{1,6,7},{2},{3},{4,5}}=>3 {{1,5,6},{2,7},{3},{4}}=>{{1,6},{2},{3},{4,5,7}}=>2 {{1,5,6},{2},{3,7},{4}}=>{{1,6},{2},{3,7},{4,5}}=>2 {{1,5,6},{2},{3},{4,7}}=>{{1,6},{2,7},{3},{4,5}}=>2 {{1,5,6},{2},{3},{4},{7}}=>{{1,6},{2},{3},{4,5},{7}}=>2 {{1,5,7},{2,6},{3},{4}}=>{{1},{2,7},{3},{4,5,6}}=>1 {{1,5},{2,6,7},{3},{4}}=>{{1,7},{2},{3},{4,5,6}}=>2 {{1,5},{2,6},{3,7},{4}}=>{{1},{2},{3},{4,5,6,7}}=>1 {{1,5},{2,6},{3},{4,7}}=>{{1},{2},{3,7},{4,5,6}}=>1 {{1,5},{2,6},{3},{4},{7}}=>{{1},{2},{3},{4,5,6},{7}}=>1 {{1,5,7},{2},{3,6},{4}}=>{{1},{2,7},{3,6},{4,5}}=>1 {{1,5},{2,7},{3,6},{4}}=>{{1},{2},{3,6},{4,5,7}}=>1 {{1,5},{2},{3,6,7},{4}}=>{{1,7},{2},{3,6},{4,5}}=>2 {{1,5},{2},{3,6},{4,7}}=>{{1},{2},{3,6,7},{4,5}}=>1 {{1,5},{2},{3,6},{4},{7}}=>{{1},{2},{3,6},{4,5},{7}}=>1 {{1,5,7},{2},{3},{4,6}}=>{{1},{2,6,7},{3},{4,5}}=>1 {{1,5},{2,7},{3},{4,6}}=>{{1},{2,6},{3},{4,5,7}}=>1 {{1,5},{2},{3,7},{4,6}}=>{{1},{2,6},{3,7},{4,5}}=>1 {{1,5},{2},{3},{4,6,7}}=>{{1,7},{2,6},{3},{4,5}}=>2 {{1,5},{2},{3},{4,6},{7}}=>{{1},{2,6},{3},{4,5},{7}}=>1 {{1,5,7},{2},{3},{4},{6}}=>{{1},{2,7},{3},{4,5},{6}}=>1 {{1,5},{2,7},{3},{4},{6}}=>{{1},{2},{3},{4,5},{6,7}}=>1 {{1,5},{2},{3,7},{4},{6}}=>{{1},{2},{3},{4,5,7},{6}}=>1 {{1,5},{2},{3},{4,7},{6}}=>{{1},{2},{3,7},{4,5},{6}}=>1 {{1,5},{2},{3},{4},{6,7}}=>{{1,7},{2},{3},{4,5},{6}}=>2 {{1,5},{2},{3},{4},{6},{7}}=>{{1},{2},{3},{4,5},{6},{7}}=>1 {{1,6,7},{2,5},{3},{4}}=>{{1,7},{2},{3,5},{4,6}}=>2 {{1,6},{2,5,7},{3},{4}}=>{{1},{2,7},{3,5},{4,6}}=>1 {{1,6},{2,5},{3,7},{4}}=>{{1},{2},{3,5},{4,6,7}}=>1 {{1,6},{2,5},{3},{4,7}}=>{{1},{2},{3,5,7},{4,6}}=>1 {{1,6},{2,5},{3},{4},{7}}=>{{1},{2},{3,5},{4,6},{7}}=>1 {{1,7},{2,5,6},{3},{4}}=>{{1,6},{2},{3,5},{4,7}}=>2 {{1},{2,5,6,7},{3},{4}}=>{{1,6,7},{2},{3,5},{4}}=>3 {{1},{2,5,6},{3,7},{4}}=>{{1,6},{2},{3,5,7},{4}}=>2 {{1},{2,5,6},{3},{4,7}}=>{{1,6},{2,7},{3,5},{4}}=>2 {{1},{2,5,6},{3},{4},{7}}=>{{1,6},{2},{3,5},{4},{7}}=>2 {{1,7},{2,5},{3,6},{4}}=>{{1},{2},{3,5,6},{4,7}}=>1 {{1},{2,5,7},{3,6},{4}}=>{{1},{2,7},{3,5,6},{4}}=>1 {{1},{2,5},{3,6,7},{4}}=>{{1,7},{2},{3,5,6},{4}}=>2 {{1},{2,5},{3,6},{4,7}}=>{{1},{2},{3,5,6,7},{4}}=>1 {{1},{2,5},{3,6},{4},{7}}=>{{1},{2},{3,5,6},{4},{7}}=>1 {{1,7},{2,5},{3},{4,6}}=>{{1},{2,6},{3,5},{4,7}}=>1 {{1},{2,5,7},{3},{4,6}}=>{{1},{2,6,7},{3,5},{4}}=>1 {{1},{2,5},{3,7},{4,6}}=>{{1},{2,6},{3,5,7},{4}}=>1 {{1},{2,5},{3},{4,6,7}}=>{{1,7},{2,6},{3,5},{4}}=>2 {{1},{2,5},{3},{4,6},{7}}=>{{1},{2,6},{3,5},{4},{7}}=>1 {{1,7},{2,5},{3},{4},{6}}=>{{1},{2},{3,5},{4},{6,7}}=>1 {{1},{2,5,7},{3},{4},{6}}=>{{1},{2,7},{3,5},{4},{6}}=>1 {{1},{2,5},{3,7},{4},{6}}=>{{1},{2},{3,5},{4,7},{6}}=>1 {{1},{2,5},{3},{4,7},{6}}=>{{1},{2},{3,5,7},{4},{6}}=>1 {{1},{2,5},{3},{4},{6,7}}=>{{1,7},{2},{3,5},{4},{6}}=>2 {{1},{2,5},{3},{4},{6},{7}}=>{{1},{2},{3,5},{4},{6},{7}}=>1 {{1,6,7},{2},{3,5},{4}}=>{{1,7},{2,5},{3},{4,6}}=>2 {{1,6},{2,7},{3,5},{4}}=>{{1},{2,5},{3},{4,6,7}}=>1 {{1,6},{2},{3,5,7},{4}}=>{{1},{2,5,7},{3},{4,6}}=>1 {{1,6},{2},{3,5},{4,7}}=>{{1},{2,5},{3,7},{4,6}}=>1 {{1,6},{2},{3,5},{4},{7}}=>{{1},{2,5},{3},{4,6},{7}}=>1 {{1,7},{2,6},{3,5},{4}}=>{{1},{2,5},{3,6},{4,7}}=>1 {{1},{2,6,7},{3,5},{4}}=>{{1,7},{2,5},{3,6},{4}}=>2 {{1},{2,6},{3,5,7},{4}}=>{{1},{2,5,7},{3,6},{4}}=>1 {{1},{2,6},{3,5},{4,7}}=>{{1},{2,5},{3,6,7},{4}}=>1 {{1},{2,6},{3,5},{4},{7}}=>{{1},{2,5},{3,6},{4},{7}}=>1 {{1,7},{2},{3,5,6},{4}}=>{{1,6},{2,5},{3},{4,7}}=>2 {{1},{2,7},{3,5,6},{4}}=>{{1,6},{2,5},{3,7},{4}}=>2 {{1},{2},{3,5,6,7},{4}}=>{{1,6,7},{2,5},{3},{4}}=>3 {{1},{2},{3,5,6},{4,7}}=>{{1,6},{2,5,7},{3},{4}}=>2 {{1},{2},{3,5,6},{4},{7}}=>{{1,6},{2,5},{3},{4},{7}}=>2 {{1,7},{2},{3,5},{4,6}}=>{{1},{2,5,6},{3},{4,7}}=>1 {{1},{2,7},{3,5},{4,6}}=>{{1},{2,5,6},{3,7},{4}}=>1 {{1},{2},{3,5,7},{4,6}}=>{{1},{2,5,6,7},{3},{4}}=>1 {{1},{2},{3,5},{4,6,7}}=>{{1,7},{2,5,6},{3},{4}}=>2 {{1},{2},{3,5},{4,6},{7}}=>{{1},{2,5,6},{3},{4},{7}}=>1 {{1,7},{2},{3,5},{4},{6}}=>{{1},{2,5},{3},{4},{6,7}}=>1 {{1},{2,7},{3,5},{4},{6}}=>{{1},{2,5},{3},{4,7},{6}}=>1 {{1},{2},{3,5,7},{4},{6}}=>{{1},{2,5,7},{3},{4},{6}}=>1 {{1},{2},{3,5},{4,7},{6}}=>{{1},{2,5},{3,7},{4},{6}}=>1 {{1},{2},{3,5},{4},{6,7}}=>{{1,7},{2,5},{3},{4},{6}}=>2 {{1},{2},{3,5},{4},{6},{7}}=>{{1},{2,5},{3},{4},{6},{7}}=>1 {{1,6,7},{2},{3},{4,5}}=>{{1,5,7},{2},{3},{4,6}}=>3 {{1,6},{2,7},{3},{4,5}}=>{{1,5},{2},{3},{4,6,7}}=>2 {{1,6},{2},{3,7},{4,5}}=>{{1,5},{2},{3,7},{4,6}}=>2 {{1,6},{2},{3},{4,5,7}}=>{{1,5},{2,7},{3},{4,6}}=>2 {{1,6},{2},{3},{4,5},{7}}=>{{1,5},{2},{3},{4,6},{7}}=>2 {{1,7},{2,6},{3},{4,5}}=>{{1,5},{2},{3,6},{4,7}}=>2 {{1},{2,6,7},{3},{4,5}}=>{{1,5,7},{2},{3,6},{4}}=>3 {{1},{2,6},{3,7},{4,5}}=>{{1,5},{2},{3,6,7},{4}}=>2 {{1},{2,6},{3},{4,5,7}}=>{{1,5},{2,7},{3,6},{4}}=>2 {{1},{2,6},{3},{4,5},{7}}=>{{1,5},{2},{3,6},{4},{7}}=>2 {{1,7},{2},{3,6},{4,5}}=>{{1,5},{2,6},{3},{4,7}}=>2 {{1},{2,7},{3,6},{4,5}}=>{{1,5},{2,6},{3,7},{4}}=>2 {{1},{2},{3,6,7},{4,5}}=>{{1,5,7},{2,6},{3},{4}}=>3 {{1},{2},{3,6},{4,5,7}}=>{{1,5},{2,6,7},{3},{4}}=>2 {{1},{2},{3,6},{4,5},{7}}=>{{1,5},{2,6},{3},{4},{7}}=>2 {{1,7},{2},{3},{4,5,6}}=>{{1,5,6},{2},{3},{4,7}}=>3 {{1},{2,7},{3},{4,5,6}}=>{{1,5,6},{2},{3,7},{4}}=>3 {{1},{2},{3,7},{4,5,6}}=>{{1,5,6},{2,7},{3},{4}}=>3 {{1},{2},{3},{4,5,6,7}}=>{{1,5,6,7},{2},{3},{4}}=>4 {{1},{2},{3},{4,5,6},{7}}=>{{1,5,6},{2},{3},{4},{7}}=>3 {{1,7},{2},{3},{4,5},{6}}=>{{1,5},{2},{3},{4},{6,7}}=>2 {{1},{2,7},{3},{4,5},{6}}=>{{1,5},{2},{3},{4,7},{6}}=>2 {{1},{2},{3,7},{4,5},{6}}=>{{1,5},{2},{3,7},{4},{6}}=>2 {{1},{2},{3},{4,5,7},{6}}=>{{1,5},{2,7},{3},{4},{6}}=>2 {{1},{2},{3},{4,5},{6,7}}=>{{1,5,7},{2},{3},{4},{6}}=>3 {{1},{2},{3},{4,5},{6},{7}}=>{{1,5},{2},{3},{4},{6},{7}}=>2 {{1,6,7},{2},{3},{4},{5}}=>{{1,7},{2},{3},{4},{5,6}}=>2 {{1,6},{2,7},{3},{4},{5}}=>{{1},{2},{3},{4},{5,6,7}}=>1 {{1,6},{2},{3,7},{4},{5}}=>{{1},{2},{3},{4,7},{5,6}}=>1 {{1,6},{2},{3},{4,7},{5}}=>{{1},{2},{3,7},{4},{5,6}}=>1 {{1,6},{2},{3},{4},{5,7}}=>{{1},{2,7},{3},{4},{5,6}}=>1 {{1,6},{2},{3},{4},{5},{7}}=>{{1},{2},{3},{4},{5,6},{7}}=>1 {{1,7},{2,6},{3},{4},{5}}=>{{1},{2},{3},{4,6},{5,7}}=>1 {{1},{2,6,7},{3},{4},{5}}=>{{1,7},{2},{3},{4,6},{5}}=>2 {{1},{2,6},{3,7},{4},{5}}=>{{1},{2},{3},{4,6,7},{5}}=>1 {{1},{2,6},{3},{4,7},{5}}=>{{1},{2},{3,7},{4,6},{5}}=>1 {{1},{2,6},{3},{4},{5,7}}=>{{1},{2,7},{3},{4,6},{5}}=>1 {{1},{2,6},{3},{4},{5},{7}}=>{{1},{2},{3},{4,6},{5},{7}}=>1 {{1,7},{2},{3,6},{4},{5}}=>{{1},{2},{3,6},{4},{5,7}}=>1 {{1},{2,7},{3,6},{4},{5}}=>{{1},{2},{3,6},{4,7},{5}}=>1 {{1},{2},{3,6,7},{4},{5}}=>{{1,7},{2},{3,6},{4},{5}}=>2 {{1},{2},{3,6},{4,7},{5}}=>{{1},{2},{3,6,7},{4},{5}}=>1 {{1},{2},{3,6},{4},{5,7}}=>{{1},{2,7},{3,6},{4},{5}}=>1 {{1},{2},{3,6},{4},{5},{7}}=>{{1},{2},{3,6},{4},{5},{7}}=>1 {{1,7},{2},{3},{4,6},{5}}=>{{1},{2,6},{3},{4},{5,7}}=>1 {{1},{2,7},{3},{4,6},{5}}=>{{1},{2,6},{3},{4,7},{5}}=>1 {{1},{2},{3,7},{4,6},{5}}=>{{1},{2,6},{3,7},{4},{5}}=>1 {{1},{2},{3},{4,6,7},{5}}=>{{1,7},{2,6},{3},{4},{5}}=>2 {{1},{2},{3},{4,6},{5,7}}=>{{1},{2,6,7},{3},{4},{5}}=>1 {{1},{2},{3},{4,6},{5},{7}}=>{{1},{2,6},{3},{4},{5},{7}}=>1 {{1,7},{2},{3},{4},{5,6}}=>{{1,6},{2},{3},{4},{5,7}}=>2 {{1},{2,7},{3},{4},{5,6}}=>{{1,6},{2},{3},{4,7},{5}}=>2 {{1},{2},{3,7},{4},{5,6}}=>{{1,6},{2},{3,7},{4},{5}}=>2 {{1},{2},{3},{4,7},{5,6}}=>{{1,6},{2,7},{3},{4},{5}}=>2 {{1},{2},{3},{4},{5,6,7}}=>{{1,6,7},{2},{3},{4},{5}}=>3 {{1},{2},{3},{4},{5,6},{7}}=>{{1,6},{2},{3},{4},{5},{7}}=>2 {{1,7},{2},{3},{4},{5},{6}}=>{{1},{2},{3},{4},{5},{6,7}}=>1 {{1},{2,7},{3},{4},{5},{6}}=>{{1},{2},{3},{4},{5,7},{6}}=>1 {{1},{2},{3,7},{4},{5},{6}}=>{{1},{2},{3},{4,7},{5},{6}}=>1 {{1},{2},{3},{4,7},{5},{6}}=>{{1},{2},{3,7},{4},{5},{6}}=>1 {{1},{2},{3},{4},{5,7},{6}}=>{{1},{2,7},{3},{4},{5},{6}}=>1 {{1},{2},{3},{4},{5},{6,7}}=>{{1,7},{2},{3},{4},{5},{6}}=>2 {{1},{2},{3},{4},{5},{6},{7}}=>{{1},{2},{3},{4},{5},{6},{7}}=>1 {{1},{2},{3,4,5,6,7,8}}=>{{1,4,5,6,7,8},{2},{3}}=>6 {{1},{2,3},{4,5,6,7,8}}=>{{1,3,5,6,7,8},{2},{4}}=>6 {{1},{2,3,4,5,6,7,8}}=>{{1,3,4,5,6,7,8},{2}}=>7 {{1,2},{3,4,5,6,7,8}}=>{{1,2,4,5,6,7,8},{3}}=>7 {{1,3,4,5,6,7,8},{2}}=>{{1,4,5,6,7,8},{2,3}}=>6 {{1,2,3},{4,5,6,7,8}}=>{{1,2,3,5,6,7,8},{4}}=>7 {{1,4,5,6,7,8},{2,3}}=>{{1,3,5,6,7,8},{2,4}}=>6 {{1,2,4,5,6,7,8},{3}}=>{{1,2,5,6,7,8},{3,4}}=>6 {{1,2,3,4},{5,6,7,8}}=>{{1,2,3,4,6,7,8},{5}}=>7 {{1,5,6,7,8},{2,3,4}}=>{{1,3,4,6,7,8},{2,5}}=>6 {{1,2,5,6,7,8},{3,4}}=>{{1,2,4,6,7,8},{3,5}}=>6 {{1,2,3,5,6,7,8},{4}}=>{{1,2,3,6,7,8},{4,5}}=>6 {{1,2,3,4,5},{6,7,8}}=>{{1,2,3,4,5,7,8},{6}}=>7 {{1,6,7,8},{2,3,4,5}}=>{{1,3,4,5,7,8},{2,6}}=>6 {{1,2,6,7,8},{3,4,5}}=>{{1,2,4,5,7,8},{3,6}}=>6 {{1,2,3,6,7,8},{4,5}}=>{{1,2,3,5,7,8},{4,6}}=>6 {{1,2,3,4,6,7,8},{5}}=>{{1,2,3,4,7,8},{5,6}}=>6 {{1,2,3,4,5,6},{7,8}}=>{{1,2,3,4,5,6,8},{7}}=>7 {{1,7,8},{2,3,4,5,6}}=>{{1,3,4,5,6,8},{2,7}}=>6 {{1,2,7,8},{3,4,5,6}}=>{{1,2,4,5,6,8},{3,7}}=>6 {{1,2,3,7,8},{4,5,6}}=>{{1,2,3,5,6,8},{4,7}}=>6 {{1,2,3,4,7,8},{5,6}}=>{{1,2,3,4,6,8},{5,7}}=>6 {{1,2,3,4,5,7,8},{6}}=>{{1,2,3,4,5,8},{6,7}}=>6 {{1,2,3,4,5,6,7},{8}}=>{{1,2,3,4,5,6,7},{8}}=>7 {{1,8},{2,3,4,5,6,7}}=>{{1,3,4,5,6,7},{2,8}}=>6 {{1,2,8},{3,4,5,6,7}}=>{{1,2,4,5,6,7},{3,8}}=>6 {{1,2,3,8},{4,5,6,7}}=>{{1,2,3,5,6,7},{4,8}}=>6 {{1,2,3,4,8},{5,6,7}}=>{{1,2,3,4,6,7},{5,8}}=>6 {{1,2,3,4,5,8},{6,7}}=>{{1,2,3,4,5,7},{6,8}}=>6 {{1,2,3,4,5,6,8},{7}}=>{{1,2,3,4,5,6},{7,8}}=>6 {{1,2,3,4,5,6,7,8}}=>{{1,2,3,4,5,6,7,8}}=>8 {{1,3,5,7,8},{2,4,6}}=>{{1,8},{2,3,4,5,6,7}}=>2 {{1,3,5,6,8},{2,4,7}}=>{{1,6},{2,3,4,5,7,8}}=>2 {{1,3,4,6,8},{2,5,7}}=>{{1,4},{2,3,5,6,7,8}}=>2 {{1,2,4,6,8},{3,5,7}}=>{{1,2},{3,4,5,6,7,8}}=>2 {{1,3,5,7},{2,4,6,8}}=>{{1},{2,3,4,5,6,7,8}}=>1 {{1,3,5,7},{2,4,6},{8}}=>{{1},{2,3,4,5,6,7},{8}}=>1 {{1,4,7},{2,5,8},{3,6}}=>{{1},{2},{3,4,5,6,7,8}}=>1 {{1},{2,4,6,8},{3,5,7}}=>{{1},{2,4,5,6,7,8},{3}}=>1 {{1,3,5,7},{2},{4,6,8}}=>{{1},{2,3,5,6,7,8},{4}}=>1 {{1,3,5},{2,4,6,8},{7}}=>{{1},{2,3,4,5,6,8},{7}}=>1 {{1,3,6,8},{2,4,5,7}}=>{{1,5},{2,3,4,6,7,8}}=>2 {{1,4,6,8},{2,3,5,7}}=>{{1,3},{2,4,5,6,7,8}}=>2 {{1,3,5,8},{2,4,6,7}}=>{{1,7},{2,3,4,5,6,8}}=>2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The cardinality of the first block of a set partition.
The number of partitions of $\{1,\ldots,n\}$ into $k$ blocks in which the first block has cardinality $j+1$ is given by $\binom{n-1}{j}S(n-j-1,k-1)$, see [1, Theorem 1.1] and the references therein. Here, $S(n,k)$ are the Stirling numbers of the second kind counting all set partitions of $\{1,\ldots,n\}$ into $k$ blocks [2].
Map
intertwining number to dual major index
Description
A bijection sending the intertwining number of a set partition to its dual major index.
More precisely, St000490The intertwining number of a set partition.$(P) = $St000493The los statistic of a set partition.$(\phi(P))$ for all set partitions $P$.