Identifier
-
Mp00092:
Perfect matchings
—to set partition⟶
Set partitions
St000496: Set partitions ⟶ ℤ
Values
=>
Cc0012;cc-rep-0
Cc0009;cc-rep
[(1,2)]=>{{1,2}}=>0
[(1,2),(3,4)]=>{{1,2},{3,4}}=>0
[(1,3),(2,4)]=>{{1,3},{2,4}}=>0
[(1,4),(2,3)]=>{{1,4},{2,3}}=>1
[(1,2),(3,4),(5,6)]=>{{1,2},{3,4},{5,6}}=>0
[(1,3),(2,4),(5,6)]=>{{1,3},{2,4},{5,6}}=>0
[(1,4),(2,3),(5,6)]=>{{1,4},{2,3},{5,6}}=>1
[(1,5),(2,3),(4,6)]=>{{1,5},{2,3},{4,6}}=>1
[(1,6),(2,3),(4,5)]=>{{1,6},{2,3},{4,5}}=>2
[(1,6),(2,4),(3,5)]=>{{1,6},{2,4},{3,5}}=>2
[(1,5),(2,4),(3,6)]=>{{1,5},{2,4},{3,6}}=>1
[(1,4),(2,5),(3,6)]=>{{1,4},{2,5},{3,6}}=>0
[(1,3),(2,5),(4,6)]=>{{1,3},{2,5},{4,6}}=>0
[(1,2),(3,5),(4,6)]=>{{1,2},{3,5},{4,6}}=>0
[(1,2),(3,6),(4,5)]=>{{1,2},{3,6},{4,5}}=>1
[(1,3),(2,6),(4,5)]=>{{1,3},{2,6},{4,5}}=>1
[(1,4),(2,6),(3,5)]=>{{1,4},{2,6},{3,5}}=>1
[(1,5),(2,6),(3,4)]=>{{1,5},{2,6},{3,4}}=>2
[(1,6),(2,5),(3,4)]=>{{1,6},{2,5},{3,4}}=>3
[(1,2),(3,4),(5,6),(7,8)]=>{{1,2},{3,4},{5,6},{7,8}}=>0
[(1,3),(2,4),(5,6),(7,8)]=>{{1,3},{2,4},{5,6},{7,8}}=>0
[(1,4),(2,3),(5,6),(7,8)]=>{{1,4},{2,3},{5,6},{7,8}}=>1
[(1,5),(2,3),(4,6),(7,8)]=>{{1,5},{2,3},{4,6},{7,8}}=>1
[(1,6),(2,3),(4,5),(7,8)]=>{{1,6},{2,3},{4,5},{7,8}}=>2
[(1,7),(2,3),(4,5),(6,8)]=>{{1,7},{2,3},{4,5},{6,8}}=>2
[(1,8),(2,3),(4,5),(6,7)]=>{{1,8},{2,3},{4,5},{6,7}}=>3
[(1,8),(2,4),(3,5),(6,7)]=>{{1,8},{2,4},{3,5},{6,7}}=>3
[(1,7),(2,4),(3,5),(6,8)]=>{{1,7},{2,4},{3,5},{6,8}}=>2
[(1,6),(2,4),(3,5),(7,8)]=>{{1,6},{2,4},{3,5},{7,8}}=>2
[(1,5),(2,4),(3,6),(7,8)]=>{{1,5},{2,4},{3,6},{7,8}}=>1
[(1,4),(2,5),(3,6),(7,8)]=>{{1,4},{2,5},{3,6},{7,8}}=>0
[(1,3),(2,5),(4,6),(7,8)]=>{{1,3},{2,5},{4,6},{7,8}}=>0
[(1,2),(3,5),(4,6),(7,8)]=>{{1,2},{3,5},{4,6},{7,8}}=>0
[(1,2),(3,6),(4,5),(7,8)]=>{{1,2},{3,6},{4,5},{7,8}}=>1
[(1,3),(2,6),(4,5),(7,8)]=>{{1,3},{2,6},{4,5},{7,8}}=>1
[(1,4),(2,6),(3,5),(7,8)]=>{{1,4},{2,6},{3,5},{7,8}}=>1
[(1,5),(2,6),(3,4),(7,8)]=>{{1,5},{2,6},{3,4},{7,8}}=>2
[(1,6),(2,5),(3,4),(7,8)]=>{{1,6},{2,5},{3,4},{7,8}}=>3
[(1,7),(2,5),(3,4),(6,8)]=>{{1,7},{2,5},{3,4},{6,8}}=>3
[(1,8),(2,5),(3,4),(6,7)]=>{{1,8},{2,5},{3,4},{6,7}}=>4
[(1,8),(2,6),(3,4),(5,7)]=>{{1,8},{2,6},{3,4},{5,7}}=>4
[(1,7),(2,6),(3,4),(5,8)]=>{{1,7},{2,6},{3,4},{5,8}}=>3
[(1,6),(2,7),(3,4),(5,8)]=>{{1,6},{2,7},{3,4},{5,8}}=>2
[(1,5),(2,7),(3,4),(6,8)]=>{{1,5},{2,7},{3,4},{6,8}}=>2
[(1,4),(2,7),(3,5),(6,8)]=>{{1,4},{2,7},{3,5},{6,8}}=>1
[(1,3),(2,7),(4,5),(6,8)]=>{{1,3},{2,7},{4,5},{6,8}}=>1
[(1,2),(3,7),(4,5),(6,8)]=>{{1,2},{3,7},{4,5},{6,8}}=>1
[(1,2),(3,8),(4,5),(6,7)]=>{{1,2},{3,8},{4,5},{6,7}}=>2
[(1,3),(2,8),(4,5),(6,7)]=>{{1,3},{2,8},{4,5},{6,7}}=>2
[(1,4),(2,8),(3,5),(6,7)]=>{{1,4},{2,8},{3,5},{6,7}}=>2
[(1,5),(2,8),(3,4),(6,7)]=>{{1,5},{2,8},{3,4},{6,7}}=>3
[(1,6),(2,8),(3,4),(5,7)]=>{{1,6},{2,8},{3,4},{5,7}}=>3
[(1,7),(2,8),(3,4),(5,6)]=>{{1,7},{2,8},{3,4},{5,6}}=>4
[(1,8),(2,7),(3,4),(5,6)]=>{{1,8},{2,7},{3,4},{5,6}}=>5
[(1,8),(2,7),(3,5),(4,6)]=>{{1,8},{2,7},{3,5},{4,6}}=>5
[(1,7),(2,8),(3,5),(4,6)]=>{{1,7},{2,8},{3,5},{4,6}}=>4
[(1,6),(2,8),(3,5),(4,7)]=>{{1,6},{2,8},{3,5},{4,7}}=>3
[(1,5),(2,8),(3,6),(4,7)]=>{{1,5},{2,8},{3,6},{4,7}}=>2
[(1,4),(2,8),(3,6),(5,7)]=>{{1,4},{2,8},{3,6},{5,7}}=>2
[(1,3),(2,8),(4,6),(5,7)]=>{{1,3},{2,8},{4,6},{5,7}}=>2
[(1,2),(3,8),(4,6),(5,7)]=>{{1,2},{3,8},{4,6},{5,7}}=>2
[(1,2),(3,7),(4,6),(5,8)]=>{{1,2},{3,7},{4,6},{5,8}}=>1
[(1,3),(2,7),(4,6),(5,8)]=>{{1,3},{2,7},{4,6},{5,8}}=>1
[(1,4),(2,7),(3,6),(5,8)]=>{{1,4},{2,7},{3,6},{5,8}}=>1
[(1,5),(2,7),(3,6),(4,8)]=>{{1,5},{2,7},{3,6},{4,8}}=>1
[(1,6),(2,7),(3,5),(4,8)]=>{{1,6},{2,7},{3,5},{4,8}}=>2
[(1,7),(2,6),(3,5),(4,8)]=>{{1,7},{2,6},{3,5},{4,8}}=>3
[(1,8),(2,6),(3,5),(4,7)]=>{{1,8},{2,6},{3,5},{4,7}}=>4
[(1,8),(2,5),(3,6),(4,7)]=>{{1,8},{2,5},{3,6},{4,7}}=>3
[(1,7),(2,5),(3,6),(4,8)]=>{{1,7},{2,5},{3,6},{4,8}}=>2
[(1,6),(2,5),(3,7),(4,8)]=>{{1,6},{2,5},{3,7},{4,8}}=>1
[(1,5),(2,6),(3,7),(4,8)]=>{{1,5},{2,6},{3,7},{4,8}}=>0
[(1,4),(2,6),(3,7),(5,8)]=>{{1,4},{2,6},{3,7},{5,8}}=>0
[(1,3),(2,6),(4,7),(5,8)]=>{{1,3},{2,6},{4,7},{5,8}}=>0
[(1,2),(3,6),(4,7),(5,8)]=>{{1,2},{3,6},{4,7},{5,8}}=>0
[(1,2),(3,5),(4,7),(6,8)]=>{{1,2},{3,5},{4,7},{6,8}}=>0
[(1,3),(2,5),(4,7),(6,8)]=>{{1,3},{2,5},{4,7},{6,8}}=>0
[(1,4),(2,5),(3,7),(6,8)]=>{{1,4},{2,5},{3,7},{6,8}}=>0
[(1,5),(2,4),(3,7),(6,8)]=>{{1,5},{2,4},{3,7},{6,8}}=>1
[(1,6),(2,4),(3,7),(5,8)]=>{{1,6},{2,4},{3,7},{5,8}}=>1
[(1,7),(2,4),(3,6),(5,8)]=>{{1,7},{2,4},{3,6},{5,8}}=>2
[(1,8),(2,4),(3,6),(5,7)]=>{{1,8},{2,4},{3,6},{5,7}}=>3
[(1,8),(2,3),(4,6),(5,7)]=>{{1,8},{2,3},{4,6},{5,7}}=>3
[(1,7),(2,3),(4,6),(5,8)]=>{{1,7},{2,3},{4,6},{5,8}}=>2
[(1,6),(2,3),(4,7),(5,8)]=>{{1,6},{2,3},{4,7},{5,8}}=>1
[(1,5),(2,3),(4,7),(6,8)]=>{{1,5},{2,3},{4,7},{6,8}}=>1
[(1,4),(2,3),(5,7),(6,8)]=>{{1,4},{2,3},{5,7},{6,8}}=>1
[(1,3),(2,4),(5,7),(6,8)]=>{{1,3},{2,4},{5,7},{6,8}}=>0
[(1,2),(3,4),(5,7),(6,8)]=>{{1,2},{3,4},{5,7},{6,8}}=>0
[(1,2),(3,4),(5,8),(6,7)]=>{{1,2},{3,4},{5,8},{6,7}}=>1
[(1,3),(2,4),(5,8),(6,7)]=>{{1,3},{2,4},{5,8},{6,7}}=>1
[(1,4),(2,3),(5,8),(6,7)]=>{{1,4},{2,3},{5,8},{6,7}}=>2
[(1,5),(2,3),(4,8),(6,7)]=>{{1,5},{2,3},{4,8},{6,7}}=>2
[(1,6),(2,3),(4,8),(5,7)]=>{{1,6},{2,3},{4,8},{5,7}}=>2
[(1,7),(2,3),(4,8),(5,6)]=>{{1,7},{2,3},{4,8},{5,6}}=>3
[(1,8),(2,3),(4,7),(5,6)]=>{{1,8},{2,3},{4,7},{5,6}}=>4
[(1,8),(2,4),(3,7),(5,6)]=>{{1,8},{2,4},{3,7},{5,6}}=>4
[(1,7),(2,4),(3,8),(5,6)]=>{{1,7},{2,4},{3,8},{5,6}}=>3
[(1,6),(2,4),(3,8),(5,7)]=>{{1,6},{2,4},{3,8},{5,7}}=>2
[(1,5),(2,4),(3,8),(6,7)]=>{{1,5},{2,4},{3,8},{6,7}}=>2
[(1,4),(2,5),(3,8),(6,7)]=>{{1,4},{2,5},{3,8},{6,7}}=>1
[(1,3),(2,5),(4,8),(6,7)]=>{{1,3},{2,5},{4,8},{6,7}}=>1
[(1,2),(3,5),(4,8),(6,7)]=>{{1,2},{3,5},{4,8},{6,7}}=>1
[(1,2),(3,6),(4,8),(5,7)]=>{{1,2},{3,6},{4,8},{5,7}}=>1
[(1,3),(2,6),(4,8),(5,7)]=>{{1,3},{2,6},{4,8},{5,7}}=>1
[(1,4),(2,6),(3,8),(5,7)]=>{{1,4},{2,6},{3,8},{5,7}}=>1
[(1,5),(2,6),(3,8),(4,7)]=>{{1,5},{2,6},{3,8},{4,7}}=>1
[(1,6),(2,5),(3,8),(4,7)]=>{{1,6},{2,5},{3,8},{4,7}}=>2
[(1,7),(2,5),(3,8),(4,6)]=>{{1,7},{2,5},{3,8},{4,6}}=>3
[(1,8),(2,5),(3,7),(4,6)]=>{{1,8},{2,5},{3,7},{4,6}}=>4
[(1,8),(2,6),(3,7),(4,5)]=>{{1,8},{2,6},{3,7},{4,5}}=>5
[(1,7),(2,6),(3,8),(4,5)]=>{{1,7},{2,6},{3,8},{4,5}}=>4
[(1,6),(2,7),(3,8),(4,5)]=>{{1,6},{2,7},{3,8},{4,5}}=>3
[(1,5),(2,7),(3,8),(4,6)]=>{{1,5},{2,7},{3,8},{4,6}}=>2
[(1,4),(2,7),(3,8),(5,6)]=>{{1,4},{2,7},{3,8},{5,6}}=>2
[(1,3),(2,7),(4,8),(5,6)]=>{{1,3},{2,7},{4,8},{5,6}}=>2
[(1,2),(3,7),(4,8),(5,6)]=>{{1,2},{3,7},{4,8},{5,6}}=>2
[(1,2),(3,8),(4,7),(5,6)]=>{{1,2},{3,8},{4,7},{5,6}}=>3
[(1,3),(2,8),(4,7),(5,6)]=>{{1,3},{2,8},{4,7},{5,6}}=>3
[(1,4),(2,8),(3,7),(5,6)]=>{{1,4},{2,8},{3,7},{5,6}}=>3
[(1,5),(2,8),(3,7),(4,6)]=>{{1,5},{2,8},{3,7},{4,6}}=>3
[(1,6),(2,8),(3,7),(4,5)]=>{{1,6},{2,8},{3,7},{4,5}}=>4
[(1,7),(2,8),(3,6),(4,5)]=>{{1,7},{2,8},{3,6},{4,5}}=>5
[(1,8),(2,7),(3,6),(4,5)]=>{{1,8},{2,7},{3,6},{4,5}}=>6
[(1,2),(3,4),(5,6),(7,8),(9,10)]=>{{1,2},{3,4},{5,6},{7,8},{9,10}}=>0
[(1,4),(2,3),(5,6),(7,8),(9,10)]=>{{1,4},{2,3},{5,6},{7,8},{9,10}}=>1
[(1,6),(2,3),(4,5),(7,8),(9,10)]=>{{1,6},{2,3},{4,5},{7,8},{9,10}}=>2
[(1,8),(2,3),(4,5),(6,7),(9,10)]=>{{1,8},{2,3},{4,5},{6,7},{9,10}}=>3
[(1,10),(2,3),(4,5),(6,7),(8,9)]=>{{1,10},{2,3},{4,5},{6,7},{8,9}}=>4
[(1,2),(3,6),(4,5),(7,8),(9,10)]=>{{1,2},{3,6},{4,5},{7,8},{9,10}}=>1
[(1,6),(2,5),(3,4),(7,8),(9,10)]=>{{1,6},{2,5},{3,4},{7,8},{9,10}}=>3
[(1,8),(2,5),(3,4),(6,7),(9,10)]=>{{1,8},{2,5},{3,4},{6,7},{9,10}}=>4
[(1,10),(2,5),(3,4),(6,7),(8,9)]=>{{1,10},{2,5},{3,4},{6,7},{8,9}}=>5
[(1,2),(3,8),(4,5),(6,7),(9,10)]=>{{1,2},{3,8},{4,5},{6,7},{9,10}}=>2
[(1,8),(2,7),(3,4),(5,6),(9,10)]=>{{1,8},{2,7},{3,4},{5,6},{9,10}}=>5
[(1,10),(2,7),(3,4),(5,6),(8,9)]=>{{1,10},{2,7},{3,4},{5,6},{8,9}}=>6
[(1,2),(3,10),(4,5),(6,7),(8,9)]=>{{1,2},{3,10},{4,5},{6,7},{8,9}}=>3
[(1,10),(2,9),(3,4),(5,6),(7,8)]=>{{1,10},{2,9},{3,4},{5,6},{7,8}}=>7
[(1,2),(3,4),(5,8),(6,7),(9,10)]=>{{1,2},{3,4},{5,8},{6,7},{9,10}}=>1
[(1,4),(2,3),(5,8),(6,7),(9,10)]=>{{1,4},{2,3},{5,8},{6,7},{9,10}}=>2
[(1,8),(2,3),(4,7),(5,6),(9,10)]=>{{1,8},{2,3},{4,7},{5,6},{9,10}}=>4
[(1,10),(2,3),(4,7),(5,6),(8,9)]=>{{1,10},{2,3},{4,7},{5,6},{8,9}}=>5
[(1,2),(3,8),(4,7),(5,6),(9,10)]=>{{1,2},{3,8},{4,7},{5,6},{9,10}}=>3
[(1,8),(2,7),(3,6),(4,5),(9,10)]=>{{1,8},{2,7},{3,6},{4,5},{9,10}}=>6
[(1,10),(2,7),(3,6),(4,5),(8,9)]=>{{1,10},{2,7},{3,6},{4,5},{8,9}}=>7
[(1,2),(3,10),(4,7),(5,6),(8,9)]=>{{1,2},{3,10},{4,7},{5,6},{8,9}}=>4
[(1,10),(2,9),(3,6),(4,5),(7,8)]=>{{1,10},{2,9},{3,6},{4,5},{7,8}}=>8
[(1,2),(3,4),(5,10),(6,7),(8,9)]=>{{1,2},{3,4},{5,10},{6,7},{8,9}}=>2
[(1,4),(2,3),(5,10),(6,7),(8,9)]=>{{1,4},{2,3},{5,10},{6,7},{8,9}}=>3
[(1,10),(2,3),(4,9),(5,6),(7,8)]=>{{1,10},{2,3},{4,9},{5,6},{7,8}}=>6
[(1,2),(3,10),(4,9),(5,6),(7,8)]=>{{1,2},{3,10},{4,9},{5,6},{7,8}}=>5
[(1,10),(2,9),(3,8),(4,5),(6,7)]=>{{1,10},{2,9},{3,8},{4,5},{6,7}}=>9
[(1,2),(3,4),(5,6),(7,10),(8,9)]=>{{1,2},{3,4},{5,6},{7,10},{8,9}}=>1
[(1,4),(2,3),(5,6),(7,10),(8,9)]=>{{1,4},{2,3},{5,6},{7,10},{8,9}}=>2
[(1,6),(2,3),(4,5),(7,10),(8,9)]=>{{1,6},{2,3},{4,5},{7,10},{8,9}}=>3
[(1,10),(2,3),(4,5),(6,9),(7,8)]=>{{1,10},{2,3},{4,5},{6,9},{7,8}}=>5
[(1,2),(3,6),(4,5),(7,10),(8,9)]=>{{1,2},{3,6},{4,5},{7,10},{8,9}}=>2
[(1,6),(2,5),(3,4),(7,10),(8,9)]=>{{1,6},{2,5},{3,4},{7,10},{8,9}}=>4
[(1,10),(2,5),(3,4),(6,9),(7,8)]=>{{1,10},{2,5},{3,4},{6,9},{7,8}}=>6
[(1,2),(3,10),(4,5),(6,9),(7,8)]=>{{1,2},{3,10},{4,5},{6,9},{7,8}}=>4
[(1,10),(2,9),(3,4),(5,8),(6,7)]=>{{1,10},{2,9},{3,4},{5,8},{6,7}}=>8
[(1,2),(3,4),(5,10),(6,9),(7,8)]=>{{1,2},{3,4},{5,10},{6,9},{7,8}}=>3
[(1,4),(2,3),(5,10),(6,9),(7,8)]=>{{1,4},{2,3},{5,10},{6,9},{7,8}}=>4
[(1,10),(2,3),(4,9),(5,8),(6,7)]=>{{1,10},{2,3},{4,9},{5,8},{6,7}}=>7
[(1,2),(3,10),(4,9),(5,8),(6,7)]=>{{1,2},{3,10},{4,9},{5,8},{6,7}}=>6
[(1,10),(2,9),(3,8),(4,7),(5,6)]=>{{1,10},{2,9},{3,8},{4,7},{5,6}}=>10
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]=>{{1,12},{2,11},{3,10},{4,9},{5,8},{6,7}}=>15
[(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)]=>{{1,2},{3,10},{4,9},{5,8},{6,7},{11,12}}=>6
[(1,12),(2,3),(4,9),(5,8),(6,7),(10,11)]=>{{1,12},{2,3},{4,9},{5,8},{6,7},{10,11}}=>8
[(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)]=>{{1,2},{3,12},{4,9},{5,8},{6,7},{10,11}}=>7
[(1,10),(2,3),(4,9),(5,8),(6,7),(11,12)]=>{{1,10},{2,3},{4,9},{5,8},{6,7},{11,12}}=>7
[(1,12),(2,11),(3,4),(5,8),(6,7),(9,10)]=>{{1,12},{2,11},{3,4},{5,8},{6,7},{9,10}}=>10
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)]=>{{1,2},{3,4},{5,8},{6,7},{9,10},{11,12}}=>1
[(1,12),(2,3),(4,11),(5,8),(6,7),(9,10)]=>{{1,12},{2,3},{4,11},{5,8},{6,7},{9,10}}=>9
[(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)]=>{{1,2},{3,12},{4,11},{5,8},{6,7},{9,10}}=>8
[(1,4),(2,3),(5,8),(6,7),(9,10),(11,12)]=>{{1,4},{2,3},{5,8},{6,7},{9,10},{11,12}}=>2
[(1,12),(2,9),(3,4),(5,8),(6,7),(10,11)]=>{{1,12},{2,9},{3,4},{5,8},{6,7},{10,11}}=>9
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)]=>{{1,2},{3,4},{5,8},{6,7},{9,12},{10,11}}=>2
[(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)]=>{{1,10},{2,9},{3,4},{5,8},{6,7},{11,12}}=>8
[(1,4),(2,3),(5,8),(6,7),(9,12),(10,11)]=>{{1,4},{2,3},{5,8},{6,7},{9,12},{10,11}}=>3
[(1,12),(2,11),(3,10),(4,5),(6,7),(8,9)]=>{{1,12},{2,11},{3,10},{4,5},{6,7},{8,9}}=>12
[(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)]=>{{1,2},{3,10},{4,5},{6,7},{8,9},{11,12}}=>3
[(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)]=>{{1,12},{2,3},{4,5},{6,7},{8,9},{10,11}}=>5
[(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]=>{{1,2},{3,12},{4,5},{6,7},{8,9},{10,11}}=>4
[(1,10),(2,3),(4,5),(6,7),(8,9),(11,12)]=>{{1,10},{2,3},{4,5},{6,7},{8,9},{11,12}}=>4
[(1,12),(2,11),(3,4),(5,10),(6,7),(8,9)]=>{{1,12},{2,11},{3,4},{5,10},{6,7},{8,9}}=>11
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)]=>{{1,2},{3,4},{5,10},{6,7},{8,9},{11,12}}=>2
[(1,12),(2,3),(4,11),(5,10),(6,7),(8,9)]=>{{1,12},{2,3},{4,11},{5,10},{6,7},{8,9}}=>10
[(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)]=>{{1,2},{3,12},{4,11},{5,10},{6,7},{8,9}}=>9
[(1,4),(2,3),(5,10),(6,7),(8,9),(11,12)]=>{{1,4},{2,3},{5,10},{6,7},{8,9},{11,12}}=>3
[(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]=>{{1,12},{2,5},{3,4},{6,7},{8,9},{10,11}}=>6
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]=>{{1,2},{3,4},{5,12},{6,7},{8,9},{10,11}}=>3
[(1,10),(2,5),(3,4),(6,7),(8,9),(11,12)]=>{{1,10},{2,5},{3,4},{6,7},{8,9},{11,12}}=>5
[(1,4),(2,3),(5,12),(6,7),(8,9),(10,11)]=>{{1,4},{2,3},{5,12},{6,7},{8,9},{10,11}}=>4
[(1,12),(2,11),(3,8),(4,5),(6,7),(9,10)]=>{{1,12},{2,11},{3,8},{4,5},{6,7},{9,10}}=>11
[(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)]=>{{1,2},{3,8},{4,5},{6,7},{9,10},{11,12}}=>2
[(1,12),(2,3),(4,5),(6,7),(8,11),(9,10)]=>{{1,12},{2,3},{4,5},{6,7},{8,11},{9,10}}=>6
[(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)]=>{{1,2},{3,12},{4,5},{6,7},{8,11},{9,10}}=>5
[(1,8),(2,3),(4,5),(6,7),(9,10),(11,12)]=>{{1,8},{2,3},{4,5},{6,7},{9,10},{11,12}}=>3
[(1,12),(2,9),(3,8),(4,5),(6,7),(10,11)]=>{{1,12},{2,9},{3,8},{4,5},{6,7},{10,11}}=>10
[(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)]=>{{1,2},{3,8},{4,5},{6,7},{9,12},{10,11}}=>3
[(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)]=>{{1,10},{2,9},{3,8},{4,5},{6,7},{11,12}}=>9
[(1,8),(2,3),(4,5),(6,7),(9,12),(10,11)]=>{{1,8},{2,3},{4,5},{6,7},{9,12},{10,11}}=>4
[(1,12),(2,5),(3,4),(6,7),(8,11),(9,10)]=>{{1,12},{2,5},{3,4},{6,7},{8,11},{9,10}}=>7
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)]=>{{1,2},{3,4},{5,12},{6,7},{8,11},{9,10}}=>4
[(1,8),(2,5),(3,4),(6,7),(9,10),(11,12)]=>{{1,8},{2,5},{3,4},{6,7},{9,10},{11,12}}=>4
[(1,4),(2,3),(5,12),(6,7),(8,11),(9,10)]=>{{1,4},{2,3},{5,12},{6,7},{8,11},{9,10}}=>5
[(1,8),(2,5),(3,4),(6,7),(9,12),(10,11)]=>{{1,8},{2,5},{3,4},{6,7},{9,12},{10,11}}=>5
[(1,12),(2,11),(3,10),(4,9),(5,6),(7,8)]=>{{1,12},{2,11},{3,10},{4,9},{5,6},{7,8}}=>14
[(1,2),(3,10),(4,9),(5,6),(7,8),(11,12)]=>{{1,2},{3,10},{4,9},{5,6},{7,8},{11,12}}=>5
[(1,12),(2,3),(4,9),(5,6),(7,8),(10,11)]=>{{1,12},{2,3},{4,9},{5,6},{7,8},{10,11}}=>7
[(1,2),(3,12),(4,9),(5,6),(7,8),(10,11)]=>{{1,2},{3,12},{4,9},{5,6},{7,8},{10,11}}=>6
[(1,10),(2,3),(4,9),(5,6),(7,8),(11,12)]=>{{1,10},{2,3},{4,9},{5,6},{7,8},{11,12}}=>6
[(1,12),(2,11),(3,4),(5,6),(7,8),(9,10)]=>{{1,12},{2,11},{3,4},{5,6},{7,8},{9,10}}=>9
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]=>{{1,2},{3,4},{5,6},{7,8},{9,10},{11,12}}=>0
[(1,12),(2,3),(4,11),(5,6),(7,8),(9,10)]=>{{1,12},{2,3},{4,11},{5,6},{7,8},{9,10}}=>8
[(1,2),(3,12),(4,11),(5,6),(7,8),(9,10)]=>{{1,2},{3,12},{4,11},{5,6},{7,8},{9,10}}=>7
[(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)]=>{{1,4},{2,3},{5,6},{7,8},{9,10},{11,12}}=>1
[(1,12),(2,9),(3,4),(5,6),(7,8),(10,11)]=>{{1,12},{2,9},{3,4},{5,6},{7,8},{10,11}}=>8
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)]=>{{1,2},{3,4},{5,6},{7,8},{9,12},{10,11}}=>1
[(1,10),(2,9),(3,4),(5,6),(7,8),(11,12)]=>{{1,10},{2,9},{3,4},{5,6},{7,8},{11,12}}=>7
[(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)]=>{{1,4},{2,3},{5,6},{7,8},{9,12},{10,11}}=>2
[(1,12),(2,11),(3,10),(4,5),(6,9),(7,8)]=>{{1,12},{2,11},{3,10},{4,5},{6,9},{7,8}}=>13
[(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)]=>{{1,2},{3,10},{4,5},{6,9},{7,8},{11,12}}=>4
[(1,12),(2,3),(4,5),(6,9),(7,8),(10,11)]=>{{1,12},{2,3},{4,5},{6,9},{7,8},{10,11}}=>6
[(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)]=>{{1,2},{3,12},{4,5},{6,9},{7,8},{10,11}}=>5
[(1,10),(2,3),(4,5),(6,9),(7,8),(11,12)]=>{{1,10},{2,3},{4,5},{6,9},{7,8},{11,12}}=>5
[(1,12),(2,11),(3,4),(5,10),(6,9),(7,8)]=>{{1,12},{2,11},{3,4},{5,10},{6,9},{7,8}}=>12
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)]=>{{1,2},{3,4},{5,10},{6,9},{7,8},{11,12}}=>3
[(1,12),(2,3),(4,11),(5,10),(6,9),(7,8)]=>{{1,12},{2,3},{4,11},{5,10},{6,9},{7,8}}=>11
[(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)]=>{{1,2},{3,12},{4,11},{5,10},{6,9},{7,8}}=>10
[(1,4),(2,3),(5,10),(6,9),(7,8),(11,12)]=>{{1,4},{2,3},{5,10},{6,9},{7,8},{11,12}}=>4
[(1,12),(2,5),(3,4),(6,9),(7,8),(10,11)]=>{{1,12},{2,5},{3,4},{6,9},{7,8},{10,11}}=>7
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]=>{{1,2},{3,4},{5,12},{6,9},{7,8},{10,11}}=>4
[(1,10),(2,5),(3,4),(6,9),(7,8),(11,12)]=>{{1,10},{2,5},{3,4},{6,9},{7,8},{11,12}}=>6
[(1,4),(2,3),(5,12),(6,9),(7,8),(10,11)]=>{{1,4},{2,3},{5,12},{6,9},{7,8},{10,11}}=>5
[(1,12),(2,11),(3,6),(4,5),(7,8),(9,10)]=>{{1,12},{2,11},{3,6},{4,5},{7,8},{9,10}}=>10
[(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)]=>{{1,2},{3,6},{4,5},{7,8},{9,10},{11,12}}=>1
[(1,12),(2,3),(4,5),(6,11),(7,8),(9,10)]=>{{1,12},{2,3},{4,5},{6,11},{7,8},{9,10}}=>7
[(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)]=>{{1,2},{3,12},{4,5},{6,11},{7,8},{9,10}}=>6
[(1,6),(2,3),(4,5),(7,8),(9,10),(11,12)]=>{{1,6},{2,3},{4,5},{7,8},{9,10},{11,12}}=>2
[(1,12),(2,9),(3,6),(4,5),(7,8),(10,11)]=>{{1,12},{2,9},{3,6},{4,5},{7,8},{10,11}}=>9
[(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)]=>{{1,2},{3,6},{4,5},{7,8},{9,12},{10,11}}=>2
[(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)]=>{{1,10},{2,9},{3,6},{4,5},{7,8},{11,12}}=>8
[(1,6),(2,3),(4,5),(7,8),(9,12),(10,11)]=>{{1,6},{2,3},{4,5},{7,8},{9,12},{10,11}}=>3
[(1,12),(2,5),(3,4),(6,11),(7,8),(9,10)]=>{{1,12},{2,5},{3,4},{6,11},{7,8},{9,10}}=>8
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)]=>{{1,2},{3,4},{5,12},{6,11},{7,8},{9,10}}=>5
[(1,6),(2,5),(3,4),(7,8),(9,10),(11,12)]=>{{1,6},{2,5},{3,4},{7,8},{9,10},{11,12}}=>3
[(1,4),(2,3),(5,12),(6,11),(7,8),(9,10)]=>{{1,4},{2,3},{5,12},{6,11},{7,8},{9,10}}=>6
[(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)]=>{{1,6},{2,5},{3,4},{7,8},{9,12},{10,11}}=>4
[(1,12),(2,11),(3,10),(4,7),(5,6),(8,9)]=>{{1,12},{2,11},{3,10},{4,7},{5,6},{8,9}}=>13
[(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)]=>{{1,2},{3,10},{4,7},{5,6},{8,9},{11,12}}=>4
[(1,12),(2,3),(4,7),(5,6),(8,9),(10,11)]=>{{1,12},{2,3},{4,7},{5,6},{8,9},{10,11}}=>6
[(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]=>{{1,2},{3,12},{4,7},{5,6},{8,9},{10,11}}=>5
[(1,10),(2,3),(4,7),(5,6),(8,9),(11,12)]=>{{1,10},{2,3},{4,7},{5,6},{8,9},{11,12}}=>5
[(1,12),(2,11),(3,4),(5,6),(7,10),(8,9)]=>{{1,12},{2,11},{3,4},{5,6},{7,10},{8,9}}=>10
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)]=>{{1,2},{3,4},{5,6},{7,10},{8,9},{11,12}}=>1
[(1,12),(2,3),(4,11),(5,6),(7,10),(8,9)]=>{{1,12},{2,3},{4,11},{5,6},{7,10},{8,9}}=>9
[(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)]=>{{1,2},{3,12},{4,11},{5,6},{7,10},{8,9}}=>8
[(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)]=>{{1,4},{2,3},{5,6},{7,10},{8,9},{11,12}}=>2
[(1,12),(2,7),(3,4),(5,6),(8,9),(10,11)]=>{{1,12},{2,7},{3,4},{5,6},{8,9},{10,11}}=>7
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]=>{{1,2},{3,4},{5,6},{7,12},{8,9},{10,11}}=>2
[(1,10),(2,7),(3,4),(5,6),(8,9),(11,12)]=>{{1,10},{2,7},{3,4},{5,6},{8,9},{11,12}}=>6
[(1,4),(2,3),(5,6),(7,12),(8,9),(10,11)]=>{{1,4},{2,3},{5,6},{7,12},{8,9},{10,11}}=>3
[(1,12),(2,11),(3,8),(4,7),(5,6),(9,10)]=>{{1,12},{2,11},{3,8},{4,7},{5,6},{9,10}}=>12
[(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)]=>{{1,2},{3,8},{4,7},{5,6},{9,10},{11,12}}=>3
[(1,12),(2,3),(4,7),(5,6),(8,11),(9,10)]=>{{1,12},{2,3},{4,7},{5,6},{8,11},{9,10}}=>7
[(1,2),(3,12),(4,7),(5,6),(8,11),(9,10)]=>{{1,2},{3,12},{4,7},{5,6},{8,11},{9,10}}=>6
[(1,8),(2,3),(4,7),(5,6),(9,10),(11,12)]=>{{1,8},{2,3},{4,7},{5,6},{9,10},{11,12}}=>4
[(1,12),(2,9),(3,8),(4,7),(5,6),(10,11)]=>{{1,12},{2,9},{3,8},{4,7},{5,6},{10,11}}=>11
[(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)]=>{{1,2},{3,8},{4,7},{5,6},{9,12},{10,11}}=>4
[(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)]=>{{1,10},{2,9},{3,8},{4,7},{5,6},{11,12}}=>10
[(1,8),(2,3),(4,7),(5,6),(9,12),(10,11)]=>{{1,8},{2,3},{4,7},{5,6},{9,12},{10,11}}=>5
[(1,12),(2,7),(3,4),(5,6),(8,11),(9,10)]=>{{1,12},{2,7},{3,4},{5,6},{8,11},{9,10}}=>8
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)]=>{{1,2},{3,4},{5,6},{7,12},{8,11},{9,10}}=>3
[(1,8),(2,7),(3,4),(5,6),(9,10),(11,12)]=>{{1,8},{2,7},{3,4},{5,6},{9,10},{11,12}}=>5
[(1,4),(2,3),(5,6),(7,12),(8,11),(9,10)]=>{{1,4},{2,3},{5,6},{7,12},{8,11},{9,10}}=>4
[(1,8),(2,7),(3,4),(5,6),(9,12),(10,11)]=>{{1,8},{2,7},{3,4},{5,6},{9,12},{10,11}}=>6
[(1,12),(2,11),(3,6),(4,5),(7,10),(8,9)]=>{{1,12},{2,11},{3,6},{4,5},{7,10},{8,9}}=>11
[(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)]=>{{1,2},{3,6},{4,5},{7,10},{8,9},{11,12}}=>2
[(1,12),(2,3),(4,5),(6,11),(7,10),(8,9)]=>{{1,12},{2,3},{4,5},{6,11},{7,10},{8,9}}=>8
[(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)]=>{{1,2},{3,12},{4,5},{6,11},{7,10},{8,9}}=>7
[(1,6),(2,3),(4,5),(7,10),(8,9),(11,12)]=>{{1,6},{2,3},{4,5},{7,10},{8,9},{11,12}}=>3
[(1,12),(2,7),(3,6),(4,5),(8,9),(10,11)]=>{{1,12},{2,7},{3,6},{4,5},{8,9},{10,11}}=>8
[(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)]=>{{1,2},{3,6},{4,5},{7,12},{8,9},{10,11}}=>3
[(1,10),(2,7),(3,6),(4,5),(8,9),(11,12)]=>{{1,10},{2,7},{3,6},{4,5},{8,9},{11,12}}=>7
[(1,6),(2,3),(4,5),(7,12),(8,9),(10,11)]=>{{1,6},{2,3},{4,5},{7,12},{8,9},{10,11}}=>4
[(1,12),(2,5),(3,4),(6,11),(7,10),(8,9)]=>{{1,12},{2,5},{3,4},{6,11},{7,10},{8,9}}=>9
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]=>{{1,2},{3,4},{5,12},{6,11},{7,10},{8,9}}=>6
[(1,6),(2,5),(3,4),(7,10),(8,9),(11,12)]=>{{1,6},{2,5},{3,4},{7,10},{8,9},{11,12}}=>4
[(1,4),(2,3),(5,12),(6,11),(7,10),(8,9)]=>{{1,4},{2,3},{5,12},{6,11},{7,10},{8,9}}=>7
[(1,6),(2,5),(3,4),(7,12),(8,9),(10,11)]=>{{1,6},{2,5},{3,4},{7,12},{8,9},{10,11}}=>5
[(1,12),(2,7),(3,6),(4,5),(8,11),(9,10)]=>{{1,12},{2,7},{3,6},{4,5},{8,11},{9,10}}=>9
[(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)]=>{{1,2},{3,6},{4,5},{7,12},{8,11},{9,10}}=>4
[(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)]=>{{1,8},{2,7},{3,6},{4,5},{9,10},{11,12}}=>6
[(1,6),(2,3),(4,5),(7,12),(8,11),(9,10)]=>{{1,6},{2,3},{4,5},{7,12},{8,11},{9,10}}=>5
[(1,8),(2,7),(3,6),(4,5),(9,12),(10,11)]=>{{1,8},{2,7},{3,6},{4,5},{9,12},{10,11}}=>7
[(1,6),(2,5),(3,4),(7,12),(8,11),(9,10)]=>{{1,6},{2,5},{3,4},{7,12},{8,11},{9,10}}=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The rcs statistic of a set partition.
Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$.
According to [1, Definition 3], a rcs (right-closer-smaller) of $S$ is given by a pair $i > j$ such that $j = \operatorname{max} B_b$ and $i \in B_a$ for $a < b$.
Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$.
According to [1, Definition 3], a rcs (right-closer-smaller) of $S$ is given by a pair $i > j$ such that $j = \operatorname{max} B_b$ and $i \in B_a$ for $a < b$.
Map
to set partition
Description
Return the set partition corresponding to the perfect matching.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!