Processing math: 100%

Values
[1] => [1] => 0
[2] => [1,1] => 1
[1,1] => [2] => 0
[3] => [1,1,1] => 1
[2,1] => [2,1] => 1
[1,1,1] => [3] => 0
[4] => [1,1,1,1] => 1
[3,1] => [2,1,1] => 1
[2,2] => [2,2] => 1
[2,1,1] => [3,1] => 1
[1,1,1,1] => [4] => 0
[5] => [1,1,1,1,1] => 1
[4,1] => [2,1,1,1] => 1
[3,2] => [2,2,1] => 1
[3,1,1] => [3,1,1] => 1
[2,2,1] => [3,2] => 1
[2,1,1,1] => [4,1] => 1
[1,1,1,1,1] => [5] => 0
[6] => [1,1,1,1,1,1] => 1
[5,1] => [2,1,1,1,1] => 1
[4,2] => [2,2,1,1] => 2
[4,1,1] => [3,1,1,1] => 1
[3,3] => [2,2,2] => 1
[3,2,1] => [3,2,1] => 2
[3,1,1,1] => [4,1,1] => 1
[2,2,2] => [3,3] => 1
[2,2,1,1] => [4,2] => 1
[2,1,1,1,1] => [5,1] => 1
[1,1,1,1,1,1] => [6] => 0
[7] => [1,1,1,1,1,1,1] => 1
[6,1] => [2,1,1,1,1,1] => 1
[5,2] => [2,2,1,1,1] => 2
[5,1,1] => [3,1,1,1,1] => 1
[4,3] => [2,2,2,1] => 1
[4,2,1] => [3,2,1,1] => 2
[4,1,1,1] => [4,1,1,1] => 1
[3,3,1] => [3,2,2] => 1
[3,2,2] => [3,3,1] => 1
[3,2,1,1] => [4,2,1] => 2
[3,1,1,1,1] => [5,1,1] => 1
[2,2,2,1] => [4,3] => 1
[2,2,1,1,1] => [5,2] => 1
[2,1,1,1,1,1] => [6,1] => 1
[1,1,1,1,1,1,1] => [7] => 0
[8] => [1,1,1,1,1,1,1,1] => 1
[7,1] => [2,1,1,1,1,1,1] => 1
[6,2] => [2,2,1,1,1,1] => 2
[6,1,1] => [3,1,1,1,1,1] => 1
[5,3] => [2,2,2,1,1] => 2
[5,2,1] => [3,2,1,1,1] => 2
[5,1,1,1] => [4,1,1,1,1] => 1
[4,4] => [2,2,2,2] => 1
[4,3,1] => [3,2,2,1] => 1
[4,2,2] => [3,3,1,1] => 2
[4,2,1,1] => [4,2,1,1] => 2
[4,1,1,1,1] => [5,1,1,1] => 1
[3,3,2] => [3,3,2] => 1
[3,3,1,1] => [4,2,2] => 1
[3,2,2,1] => [4,3,1] => 2
[3,2,1,1,1] => [5,2,1] => 2
[3,1,1,1,1,1] => [6,1,1] => 1
[2,2,2,2] => [4,4] => 1
[2,2,2,1,1] => [5,3] => 1
[2,2,1,1,1,1] => [6,2] => 1
[2,1,1,1,1,1,1] => [7,1] => 1
[1,1,1,1,1,1,1,1] => [8] => 0
[9] => [1,1,1,1,1,1,1,1,1] => 1
[8,1] => [2,1,1,1,1,1,1,1] => 1
[7,2] => [2,2,1,1,1,1,1] => 2
[7,1,1] => [3,1,1,1,1,1,1] => 1
[6,3] => [2,2,2,1,1,1] => 2
[6,2,1] => [3,2,1,1,1,1] => 2
[6,1,1,1] => [4,1,1,1,1,1] => 1
[5,4] => [2,2,2,2,1] => 1
[5,3,1] => [3,2,2,1,1] => 2
[5,2,2] => [3,3,1,1,1] => 2
[5,2,1,1] => [4,2,1,1,1] => 2
[5,1,1,1,1] => [5,1,1,1,1] => 1
[4,4,1] => [3,2,2,2] => 1
[4,3,2] => [3,3,2,1] => 2
[4,3,1,1] => [4,2,2,1] => 1
[4,2,2,1] => [4,3,1,1] => 2
[4,2,1,1,1] => [5,2,1,1] => 2
[4,1,1,1,1,1] => [6,1,1,1] => 1
[3,3,3] => [3,3,3] => 1
[3,3,2,1] => [4,3,2] => 2
[3,3,1,1,1] => [5,2,2] => 1
[3,2,2,2] => [4,4,1] => 1
[3,2,2,1,1] => [5,3,1] => 2
[3,2,1,1,1,1] => [6,2,1] => 2
[3,1,1,1,1,1,1] => [7,1,1] => 1
[2,2,2,2,1] => [5,4] => 1
[2,2,2,1,1,1] => [6,3] => 1
[2,2,1,1,1,1,1] => [7,2] => 1
[2,1,1,1,1,1,1,1] => [8,1] => 1
[1,1,1,1,1,1,1,1,1] => [9] => 0
[10] => [1,1,1,1,1,1,1,1,1,1] => 1
[9,1] => [2,1,1,1,1,1,1,1,1] => 1
[8,2] => [2,2,1,1,1,1,1,1] => 2
[8,1,1] => [3,1,1,1,1,1,1,1] => 1
[7,3] => [2,2,2,1,1,1,1] => 2
>>> Load all 272 entries. <<<
[7,2,1] => [3,2,1,1,1,1,1] => 2
[7,1,1,1] => [4,1,1,1,1,1,1] => 1
[6,4] => [2,2,2,2,1,1] => 2
[6,3,1] => [3,2,2,1,1,1] => 2
[6,2,2] => [3,3,1,1,1,1] => 2
[6,2,1,1] => [4,2,1,1,1,1] => 2
[6,1,1,1,1] => [5,1,1,1,1,1] => 1
[5,5] => [2,2,2,2,2] => 1
[5,4,1] => [3,2,2,2,1] => 1
[5,3,2] => [3,3,2,1,1] => 2
[5,3,1,1] => [4,2,2,1,1] => 2
[5,2,2,1] => [4,3,1,1,1] => 2
[5,2,1,1,1] => [5,2,1,1,1] => 2
[5,1,1,1,1,1] => [6,1,1,1,1] => 1
[4,4,2] => [3,3,2,2] => 2
[4,4,1,1] => [4,2,2,2] => 1
[4,3,3] => [3,3,3,1] => 1
[4,3,2,1] => [4,3,2,1] => 3
[4,3,1,1,1] => [5,2,2,1] => 1
[4,2,2,2] => [4,4,1,1] => 2
[4,2,2,1,1] => [5,3,1,1] => 2
[4,2,1,1,1,1] => [6,2,1,1] => 2
[4,1,1,1,1,1,1] => [7,1,1,1] => 1
[3,3,3,1] => [4,3,3] => 1
[3,3,2,2] => [4,4,2] => 1
[3,3,2,1,1] => [5,3,2] => 2
[3,3,1,1,1,1] => [6,2,2] => 1
[3,2,2,2,1] => [5,4,1] => 2
[3,2,2,1,1,1] => [6,3,1] => 2
[3,2,1,1,1,1,1] => [7,2,1] => 2
[3,1,1,1,1,1,1,1] => [8,1,1] => 1
[2,2,2,2,2] => [5,5] => 1
[2,2,2,2,1,1] => [6,4] => 1
[2,2,2,1,1,1,1] => [7,3] => 1
[2,2,1,1,1,1,1,1] => [8,2] => 1
[2,1,1,1,1,1,1,1,1] => [9,1] => 1
[1,1,1,1,1,1,1,1,1,1] => [10] => 0
[11] => [1,1,1,1,1,1,1,1,1,1,1] => 1
[10,1] => [2,1,1,1,1,1,1,1,1,1] => 1
[9,2] => [2,2,1,1,1,1,1,1,1] => 2
[9,1,1] => [3,1,1,1,1,1,1,1,1] => 1
[8,3] => [2,2,2,1,1,1,1,1] => 2
[8,2,1] => [3,2,1,1,1,1,1,1] => 2
[8,1,1,1] => [4,1,1,1,1,1,1,1] => 1
[7,4] => [2,2,2,2,1,1,1] => 2
[7,3,1] => [3,2,2,1,1,1,1] => 2
[7,2,2] => [3,3,1,1,1,1,1] => 2
[7,2,1,1] => [4,2,1,1,1,1,1] => 2
[7,1,1,1,1] => [5,1,1,1,1,1,1] => 1
[6,5] => [2,2,2,2,2,1] => 1
[6,4,1] => [3,2,2,2,1,1] => 2
[6,3,2] => [3,3,2,1,1,1] => 2
[6,3,1,1] => [4,2,2,1,1,1] => 2
[6,2,2,1] => [4,3,1,1,1,1] => 2
[6,2,1,1,1] => [5,2,1,1,1,1] => 2
[6,1,1,1,1,1] => [6,1,1,1,1,1] => 1
[5,5,1] => [3,2,2,2,2] => 1
[5,4,2] => [3,3,2,2,1] => 2
[5,4,1,1] => [4,2,2,2,1] => 1
[5,3,3] => [3,3,3,1,1] => 2
[5,3,2,1] => [4,3,2,1,1] => 3
[5,3,1,1,1] => [5,2,2,1,1] => 2
[5,2,2,2] => [4,4,1,1,1] => 2
[5,2,2,1,1] => [5,3,1,1,1] => 2
[5,2,1,1,1,1] => [6,2,1,1,1] => 2
[5,1,1,1,1,1,1] => [7,1,1,1,1] => 1
[4,4,3] => [3,3,3,2] => 1
[4,4,2,1] => [4,3,2,2] => 2
[4,4,1,1,1] => [5,2,2,2] => 1
[4,3,3,1] => [4,3,3,1] => 1
[4,3,2,2] => [4,4,2,1] => 2
[4,3,2,1,1] => [5,3,2,1] => 3
[4,3,1,1,1,1] => [6,2,2,1] => 1
[4,2,2,2,1] => [5,4,1,1] => 2
[4,2,2,1,1,1] => [6,3,1,1] => 2
[4,2,1,1,1,1,1] => [7,2,1,1] => 2
[4,1,1,1,1,1,1,1] => [8,1,1,1] => 1
[3,3,3,2] => [4,4,3] => 1
[3,3,3,1,1] => [5,3,3] => 1
[3,3,2,2,1] => [5,4,2] => 2
[3,3,2,1,1,1] => [6,3,2] => 2
[3,3,1,1,1,1,1] => [7,2,2] => 1
[3,2,2,2,2] => [5,5,1] => 1
[3,2,2,2,1,1] => [6,4,1] => 2
[3,2,2,1,1,1,1] => [7,3,1] => 2
[3,2,1,1,1,1,1,1] => [8,2,1] => 2
[3,1,1,1,1,1,1,1,1] => [9,1,1] => 1
[2,2,2,2,2,1] => [6,5] => 1
[2,2,2,2,1,1,1] => [7,4] => 1
[2,2,2,1,1,1,1,1] => [8,3] => 1
[2,2,1,1,1,1,1,1,1] => [9,2] => 1
[2,1,1,1,1,1,1,1,1,1] => [10,1] => 1
[1,1,1,1,1,1,1,1,1,1,1] => [11] => 0
[12] => [1,1,1,1,1,1,1,1,1,1,1,1] => 1
[11,1] => [2,1,1,1,1,1,1,1,1,1,1] => 1
[10,2] => [2,2,1,1,1,1,1,1,1,1] => 2
[10,1,1] => [3,1,1,1,1,1,1,1,1,1] => 1
[9,3] => [2,2,2,1,1,1,1,1,1] => 2
[9,2,1] => [3,2,1,1,1,1,1,1,1] => 2
[9,1,1,1] => [4,1,1,1,1,1,1,1,1] => 1
[8,4] => [2,2,2,2,1,1,1,1] => 2
[8,3,1] => [3,2,2,1,1,1,1,1] => 2
[8,2,2] => [3,3,1,1,1,1,1,1] => 2
[8,2,1,1] => [4,2,1,1,1,1,1,1] => 2
[8,1,1,1,1] => [5,1,1,1,1,1,1,1] => 1
[7,5] => [2,2,2,2,2,1,1] => 2
[7,4,1] => [3,2,2,2,1,1,1] => 2
[7,3,2] => [3,3,2,1,1,1,1] => 2
[7,3,1,1] => [4,2,2,1,1,1,1] => 2
[7,2,2,1] => [4,3,1,1,1,1,1] => 2
[7,2,1,1,1] => [5,2,1,1,1,1,1] => 2
[7,1,1,1,1,1] => [6,1,1,1,1,1,1] => 1
[6,6] => [2,2,2,2,2,2] => 1
[6,5,1] => [3,2,2,2,2,1] => 1
[6,4,2] => [3,3,2,2,1,1] => 3
[6,4,1,1] => [4,2,2,2,1,1] => 2
[6,3,3] => [3,3,3,1,1,1] => 2
[6,3,2,1] => [4,3,2,1,1,1] => 3
[6,3,1,1,1] => [5,2,2,1,1,1] => 2
[6,2,2,2] => [4,4,1,1,1,1] => 2
[6,2,2,1,1] => [5,3,1,1,1,1] => 2
[6,2,1,1,1,1] => [6,2,1,1,1,1] => 2
[6,1,1,1,1,1,1] => [7,1,1,1,1,1] => 1
[5,5,2] => [3,3,2,2,2] => 2
[5,5,1,1] => [4,2,2,2,2] => 1
[5,4,3] => [3,3,3,2,1] => 2
[5,4,2,1] => [4,3,2,2,1] => 2
[5,4,1,1,1] => [5,2,2,2,1] => 1
[5,3,3,1] => [4,3,3,1,1] => 2
[5,3,2,2] => [4,4,2,1,1] => 2
[5,3,2,1,1] => [5,3,2,1,1] => 3
[5,3,1,1,1,1] => [6,2,2,1,1] => 2
[5,2,2,2,1] => [5,4,1,1,1] => 2
[5,2,2,1,1,1] => [6,3,1,1,1] => 2
[5,2,1,1,1,1,1] => [7,2,1,1,1] => 2
[5,1,1,1,1,1,1,1] => [8,1,1,1,1] => 1
[4,4,4] => [3,3,3,3] => 1
[4,4,3,1] => [4,3,3,2] => 1
[4,4,2,2] => [4,4,2,2] => 2
[4,4,2,1,1] => [5,3,2,2] => 2
[4,4,1,1,1,1] => [6,2,2,2] => 1
[4,3,3,2] => [4,4,3,1] => 2
[4,3,3,1,1] => [5,3,3,1] => 1
[4,3,2,2,1] => [5,4,2,1] => 3
[4,3,2,1,1,1] => [6,3,2,1] => 3
[4,3,1,1,1,1,1] => [7,2,2,1] => 1
[4,2,2,2,2] => [5,5,1,1] => 2
[4,2,2,2,1,1] => [6,4,1,1] => 2
[4,2,2,1,1,1,1] => [7,3,1,1] => 2
[4,2,1,1,1,1,1,1] => [8,2,1,1] => 2
[4,1,1,1,1,1,1,1,1] => [9,1,1,1] => 1
[3,3,3,3] => [4,4,4] => 1
[3,3,3,2,1] => [5,4,3] => 2
[3,3,3,1,1,1] => [6,3,3] => 1
[3,3,2,2,2] => [5,5,2] => 1
[3,3,2,2,1,1] => [6,4,2] => 2
[3,3,2,1,1,1,1] => [7,3,2] => 2
[3,3,1,1,1,1,1,1] => [8,2,2] => 1
[3,2,2,2,2,1] => [6,5,1] => 2
[3,2,2,2,1,1,1] => [7,4,1] => 2
[3,2,2,1,1,1,1,1] => [8,3,1] => 2
[3,2,1,1,1,1,1,1,1] => [9,2,1] => 2
[3,1,1,1,1,1,1,1,1,1] => [10,1,1] => 1
[2,2,2,2,2,2] => [6,6] => 1
[2,2,2,2,2,1,1] => [7,5] => 1
[2,2,2,2,1,1,1,1] => [8,4] => 1
[2,2,2,1,1,1,1,1,1] => [9,3] => 1
[2,2,1,1,1,1,1,1,1,1] => [10,2] => 1
[2,1,1,1,1,1,1,1,1,1,1] => [11,1] => 1
[1,1,1,1,1,1,1,1,1,1,1,1] => [12] => 0
[] => [] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of upper covers of a partition in dominance order.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition λ of n is the partition λ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.