Identifier
-
Mp00044:
Integer partitions
—conjugate⟶
Integer partitions
St000481: Integer partitions ⟶ ℤ
Values
[1] => [1] => 0
[2] => [1,1] => 1
[1,1] => [2] => 0
[3] => [1,1,1] => 1
[2,1] => [2,1] => 1
[1,1,1] => [3] => 0
[4] => [1,1,1,1] => 1
[3,1] => [2,1,1] => 1
[2,2] => [2,2] => 1
[2,1,1] => [3,1] => 1
[1,1,1,1] => [4] => 0
[5] => [1,1,1,1,1] => 1
[4,1] => [2,1,1,1] => 1
[3,2] => [2,2,1] => 1
[3,1,1] => [3,1,1] => 1
[2,2,1] => [3,2] => 1
[2,1,1,1] => [4,1] => 1
[1,1,1,1,1] => [5] => 0
[6] => [1,1,1,1,1,1] => 1
[5,1] => [2,1,1,1,1] => 1
[4,2] => [2,2,1,1] => 2
[4,1,1] => [3,1,1,1] => 1
[3,3] => [2,2,2] => 1
[3,2,1] => [3,2,1] => 2
[3,1,1,1] => [4,1,1] => 1
[2,2,2] => [3,3] => 1
[2,2,1,1] => [4,2] => 1
[2,1,1,1,1] => [5,1] => 1
[1,1,1,1,1,1] => [6] => 0
[7] => [1,1,1,1,1,1,1] => 1
[6,1] => [2,1,1,1,1,1] => 1
[5,2] => [2,2,1,1,1] => 2
[5,1,1] => [3,1,1,1,1] => 1
[4,3] => [2,2,2,1] => 1
[4,2,1] => [3,2,1,1] => 2
[4,1,1,1] => [4,1,1,1] => 1
[3,3,1] => [3,2,2] => 1
[3,2,2] => [3,3,1] => 1
[3,2,1,1] => [4,2,1] => 2
[3,1,1,1,1] => [5,1,1] => 1
[2,2,2,1] => [4,3] => 1
[2,2,1,1,1] => [5,2] => 1
[2,1,1,1,1,1] => [6,1] => 1
[1,1,1,1,1,1,1] => [7] => 0
[8] => [1,1,1,1,1,1,1,1] => 1
[7,1] => [2,1,1,1,1,1,1] => 1
[6,2] => [2,2,1,1,1,1] => 2
[6,1,1] => [3,1,1,1,1,1] => 1
[5,3] => [2,2,2,1,1] => 2
[5,2,1] => [3,2,1,1,1] => 2
[5,1,1,1] => [4,1,1,1,1] => 1
[4,4] => [2,2,2,2] => 1
[4,3,1] => [3,2,2,1] => 1
[4,2,2] => [3,3,1,1] => 2
[4,2,1,1] => [4,2,1,1] => 2
[4,1,1,1,1] => [5,1,1,1] => 1
[3,3,2] => [3,3,2] => 1
[3,3,1,1] => [4,2,2] => 1
[3,2,2,1] => [4,3,1] => 2
[3,2,1,1,1] => [5,2,1] => 2
[3,1,1,1,1,1] => [6,1,1] => 1
[2,2,2,2] => [4,4] => 1
[2,2,2,1,1] => [5,3] => 1
[2,2,1,1,1,1] => [6,2] => 1
[2,1,1,1,1,1,1] => [7,1] => 1
[1,1,1,1,1,1,1,1] => [8] => 0
[9] => [1,1,1,1,1,1,1,1,1] => 1
[8,1] => [2,1,1,1,1,1,1,1] => 1
[7,2] => [2,2,1,1,1,1,1] => 2
[7,1,1] => [3,1,1,1,1,1,1] => 1
[6,3] => [2,2,2,1,1,1] => 2
[6,2,1] => [3,2,1,1,1,1] => 2
[6,1,1,1] => [4,1,1,1,1,1] => 1
[5,4] => [2,2,2,2,1] => 1
[5,3,1] => [3,2,2,1,1] => 2
[5,2,2] => [3,3,1,1,1] => 2
[5,2,1,1] => [4,2,1,1,1] => 2
[5,1,1,1,1] => [5,1,1,1,1] => 1
[4,4,1] => [3,2,2,2] => 1
[4,3,2] => [3,3,2,1] => 2
[4,3,1,1] => [4,2,2,1] => 1
[4,2,2,1] => [4,3,1,1] => 2
[4,2,1,1,1] => [5,2,1,1] => 2
[4,1,1,1,1,1] => [6,1,1,1] => 1
[3,3,3] => [3,3,3] => 1
[3,3,2,1] => [4,3,2] => 2
[3,3,1,1,1] => [5,2,2] => 1
[3,2,2,2] => [4,4,1] => 1
[3,2,2,1,1] => [5,3,1] => 2
[3,2,1,1,1,1] => [6,2,1] => 2
[3,1,1,1,1,1,1] => [7,1,1] => 1
[2,2,2,2,1] => [5,4] => 1
[2,2,2,1,1,1] => [6,3] => 1
[2,2,1,1,1,1,1] => [7,2] => 1
[2,1,1,1,1,1,1,1] => [8,1] => 1
[1,1,1,1,1,1,1,1,1] => [9] => 0
[10] => [1,1,1,1,1,1,1,1,1,1] => 1
[9,1] => [2,1,1,1,1,1,1,1,1] => 1
[8,2] => [2,2,1,1,1,1,1,1] => 2
[8,1,1] => [3,1,1,1,1,1,1,1] => 1
[7,3] => [2,2,2,1,1,1,1] => 2
>>> Load all 272 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of upper covers of a partition in dominance order.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition λ of n is the partition λ∗ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition λ of n is the partition λ∗ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!