Identifier
-
Mp00179:
Integer partitions
—to skew partition⟶
Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000468: Graphs ⟶ ℤ
Values
[1] => [[1],[]] => ([],1) => ([],1) => 1
[2] => [[2],[]] => ([(0,1)],2) => ([(0,1)],2) => 2
[1,1] => [[1,1],[]] => ([(0,1)],2) => ([(0,1)],2) => 2
[3] => [[3],[]] => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 3
[2,1] => [[2,1],[]] => ([(0,1),(0,2)],3) => ([(0,2),(1,2)],3) => 3
[1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 3
[4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 5
[3,1] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => ([(0,3),(1,2),(2,3)],4) => 5
[2,2] => [[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 7
[2,1,1] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => ([(0,3),(1,2),(2,3)],4) => 5
[1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 5
[5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 8
[4,1] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 8
[3,2] => [[3,2],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 10
[3,1,1] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 8
[2,2,1] => [[2,2,1],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 10
[2,1,1,1] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 8
[1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 8
[6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 13
[5,1] => [[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 13
[4,2] => [[4,2],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 17
[4,1,1] => [[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 13
[3,3] => [[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 22
[3,2,1] => [[3,2,1],[]] => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 14
[3,1,1,1] => [[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 13
[2,2,2] => [[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 22
[2,2,1,1] => [[2,2,1,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 17
[2,1,1,1,1] => [[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 13
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 13
[7] => [[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 21
[6,1] => [[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 21
[5,2] => [[5,2],[]] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7) => ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => 27
[5,1,1] => [[5,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 21
[4,3] => [[4,3],[]] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 32
[4,2,1] => [[4,2,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => 24
[4,1,1,1] => [[4,1,1,1],[]] => ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 21
[3,3,1] => [[3,3,1],[]] => ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 32
[3,2,2] => [[3,2,2],[]] => ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 32
[3,2,1,1] => [[3,2,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => 24
[3,1,1,1,1] => [[3,1,1,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 21
[2,2,2,1] => [[2,2,2,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 32
[2,2,1,1,1] => [[2,2,1,1,1],[]] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7) => ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => 27
[2,1,1,1,1,1] => [[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 21
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 21
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Hosoya index of a graph.
This is the total number of matchings in the graph.
This is the total number of matchings in the graph.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
Map
to skew partition
Description
The partition regarded as a skew partition.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!