Identifier
-
Mp00128:
Set partitions
—to composition⟶
Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤ
Values
{{1,2}} => [2] => [1,1] => ([(0,1)],2) => 1
{{1,2,3}} => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
{{1},{2,3}} => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 1
{{1,2,3,4}} => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 6
{{1,2},{3,4}} => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
{{1,3},{2,4}} => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
{{1,4},{2,3}} => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
{{1},{2,3,4}} => [1,3] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1},{2},{3,4}} => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 1
{{1,2,3,4,5}} => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 10
{{1,2,3},{4,5}} => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,2,4},{3,5}} => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,2,5},{3,4}} => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,2},{3,4,5}} => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
{{1,2},{3},{4,5}} => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,3,4},{2,5}} => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,3,5},{2,4}} => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,3},{2,4,5}} => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
{{1,3},{2},{4,5}} => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,4,5},{2,3}} => [3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,4},{2,3,5}} => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
{{1,5},{2,3,4}} => [2,3] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 6
{{1},{2,3,4,5}} => [1,4] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 8
{{1},{2,3},{4,5}} => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
{{1,4},{2},{3,5}} => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1},{2,4},{3,5}} => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
{{1,5},{2},{3,4}} => [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1},{2,5},{3,4}} => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
{{1},{2},{3,4,5}} => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
{{1},{2},{3},{4,5}} => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 1
{{1,2,3,4,5,6}} => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 15
{{1,2,3,4},{5,6}} => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,2,3,5},{4,6}} => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,2,3,6},{4,5}} => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,2,3},{4,5,6}} => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
{{1,2,3},{4},{5,6}} => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,2,4,5},{3,6}} => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,2,4,6},{3,5}} => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,2,4},{3,5,6}} => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
{{1,2,4},{3},{5,6}} => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,2,5,6},{3,4}} => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,2,5},{3,4,6}} => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
{{1,2,6},{3,4,5}} => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
{{1,2},{3,4,5,6}} => [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 11
{{1,2},{3,4},{5,6}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,2,5},{3},{4,6}} => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,2},{3,5},{4,6}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,2,6},{3},{4,5}} => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,2},{3,6},{4,5}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,2},{3},{4,5,6}} => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,2},{3},{4},{5,6}} => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,3,4,5},{2,6}} => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,3,4,6},{2,5}} => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,3,4},{2,5,6}} => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
{{1,3,4},{2},{5,6}} => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,3,5,6},{2,4}} => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,3,5},{2,4,6}} => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
{{1,3,6},{2,4,5}} => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
{{1,3},{2,4,5,6}} => [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 11
{{1,3},{2,4},{5,6}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,3,5},{2},{4,6}} => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,3},{2,5},{4,6}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,3,6},{2},{4,5}} => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,3},{2,6},{4,5}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,3},{2},{4,5,6}} => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,3},{2},{4},{5,6}} => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,4,5,6},{2,3}} => [4,2] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,4,5},{2,3,6}} => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
{{1,4,6},{2,3,5}} => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
{{1,4},{2,3,5,6}} => [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 11
{{1,4},{2,3},{5,6}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,5,6},{2,3,4}} => [3,3] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 9
{{1,5},{2,3,4,6}} => [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 11
{{1,6},{2,3,4,5}} => [2,4] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 11
{{1},{2,3,4,5,6}} => [1,5] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 13
{{1},{2,3,4},{5,6}} => [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1,5},{2,3},{4,6}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1},{2,3,5},{4,6}} => [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1,6},{2,3},{4,5}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1},{2,3,6},{4,5}} => [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1},{2,3},{4,5,6}} => [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
{{1},{2,3},{4},{5,6}} => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,4,5},{2},{3,6}} => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,4},{2,5},{3,6}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,4,6},{2},{3,5}} => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,4},{2,6},{3,5}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,4},{2},{3,5,6}} => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,4},{2},{3},{5,6}} => [2,1,1,2] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,5},{2,4},{3,6}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1},{2,4,5},{3,6}} => [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1,6},{2,4},{3,5}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1},{2,4,6},{3,5}} => [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1},{2,4},{3,5,6}} => [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
{{1},{2,4},{3},{5,6}} => [1,2,1,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,5,6},{2},{3,4}} => [3,1,2] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,5},{2,6},{3,4}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,5},{2},{3,4,6}} => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
{{1,6},{2,5},{3,4}} => [2,2,2] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1},{2,5,6},{3,4}} => [1,3,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1},{2,5},{3,4,6}} => [1,2,3] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 8
{{1,6},{2},{3,4,5}} => [2,1,3] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
>>> Load all 466 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Map
to composition
Description
The integer composition of block sizes of a set partition.
For a set partition of $\{1,2,\dots,n\}$, this is the integer composition of $n$ obtained by sorting the blocks by their minimal element and then taking the block sizes.
For a set partition of $\{1,2,\dots,n\}$, this is the integer composition of $n$ obtained by sorting the blocks by their minimal element and then taking the block sizes.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
complement
Description
The complement of a composition.
The complement of a composition $I$ is defined as follows:
If $I$ is the empty composition, then the complement is also the empty composition. Otherwise, let $S$ be the descent set corresponding to $I=(i_1,\dots,i_k)$, that is, the subset
$$\{ i_1, i_1 + i_2, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$$
of $\{ 1, 2, \ldots, |I|-1 \}$. Then, the complement of $I$ is the composition of the same size as $I$, whose descent set is $\{ 1, 2, \ldots, |I|-1 \} \setminus S$.
The complement of a composition $I$ coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to $I$.
The complement of a composition $I$ is defined as follows:
If $I$ is the empty composition, then the complement is also the empty composition. Otherwise, let $S$ be the descent set corresponding to $I=(i_1,\dots,i_k)$, that is, the subset
$$\{ i_1, i_1 + i_2, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$$
of $\{ 1, 2, \ldots, |I|-1 \}$. Then, the complement of $I$ is the composition of the same size as $I$, whose descent set is $\{ 1, 2, \ldots, |I|-1 \} \setminus S$.
The complement of a composition $I$ coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to $I$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!