Identifier
Values
[[2],[]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[1,1],[]] => ([(0,1)],2) => ([(0,1)],2) => 1
[[3],[]] => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 1
[[2,1],[]] => ([(0,1),(0,2)],3) => ([(0,2),(1,2)],3) => 1
[[2,2],[1]] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 1
[[1,1,1],[]] => ([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => 1
[[4],[]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 1
[[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => ([(0,3),(1,2),(2,3)],4) => 1
[[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
[[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
[[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => ([(0,3),(1,2),(2,3)],4) => 1
[[3,3],[2]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
[[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
[[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
[[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => 1
[[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[3,2],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 2
[[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[3,3],[1]] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 2
[[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[2,2,1],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 2
[[3,2,1],[1]] => ([(0,3),(0,4),(1,2),(1,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[3,2,2],[1,1]] => ([(0,4),(1,2),(1,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[3,3,1],[2]] => ([(0,4),(1,2),(1,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[2,2,2],[1]] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 2
[[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[4,2],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
[[5,2],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[4,3],[1]] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[5,3],[2]] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,2,1],[]] => ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[4,2,1],[1]] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[4,2,2],[1,1]] => ([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[4,4],[2]] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
[[5,4],[3]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,3,1],[1]] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
[[4,3,1],[2]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 3
[[3,3,2],[1,1]] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
[[3,2,2],[1]] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
[[4,3,2],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[2,2,1,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
[[3,2,1,1],[1]] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[4,3,3],[2,2]] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,2,2,1],[1,1]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,2,2,2],[1,1,1]] => ([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[4,4,1],[3]] => ([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,3,2],[2]] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
[[4,4,2],[3,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,3,1,1],[2]] => ([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,3,3],[2,1]] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[4,4,3],[3,2]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[2,2,2,1],[1]] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
[[3,3,2,1],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,3,2,2],[2,1,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[2,2,1,1,1],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,3,3,1],[2,2]] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[2,2,2,2],[1,1]] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2
[[3,3,3,2],[2,2,1]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[2,2,2,1,1],[1,1]] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[2,2,2,2,1],[1,1,1]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1
[[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[[5,2],[]] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7) => ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => 2
[[6,2],[1]] => ([(0,6),(1,5),(1,6),(3,4),(4,2),(5,3)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[[5,1,1],[]] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[[4,3],[]] => ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 3
[[5,3],[1]] => ([(0,6),(1,4),(1,6),(3,2),(4,3),(4,5),(6,5)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => 2
[[6,3],[2]] => ([(0,3),(1,5),(1,6),(3,6),(4,2),(5,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[[4,2,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => 2
[[5,2,1],[1]] => ([(0,5),(0,6),(1,3),(1,6),(4,2),(5,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[[5,2,2],[1,1]] => ([(0,6),(1,3),(1,5),(3,6),(4,2),(5,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[[4,1,1,1],[]] => ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[[4,4],[1]] => ([(0,6),(1,3),(1,6),(2,4),(3,2),(3,5),(5,4),(6,5)],7) => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 3
[[5,4],[2]] => ([(0,3),(1,4),(1,6),(3,6),(4,2),(4,5),(6,5)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => 2
[[6,4],[3]] => ([(0,4),(1,5),(1,6),(3,6),(4,3),(5,2)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[[3,3,1],[]] => ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 3
[[4,3,1],[1]] => ([(0,3),(0,6),(1,4),(1,6),(4,2),(4,5),(6,5)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => 2
[[5,3,1],[2]] => ([(0,5),(0,6),(1,3),(1,4),(4,6),(5,2)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1
[[3,2,2],[]] => ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7) => ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 3
[[4,3,2],[1,1]] => ([(0,6),(1,3),(1,4),(3,5),(3,6),(4,2),(4,5)],7) => ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => 2
>>> Load all 186 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!