Identifier
-
Mp00095:
Integer partitions
—to binary word⟶
Binary words
Mp00105: Binary words —complement⟶ Binary words
St000348: Binary words ⟶ ℤ
Values
[1] => 10 => 01 => 1
[2] => 100 => 011 => 3
[1,1] => 110 => 001 => 3
[3] => 1000 => 0111 => 6
[2,1] => 1010 => 0101 => 5
[1,1,1] => 1110 => 0001 => 6
[4] => 10000 => 01111 => 10
[3,1] => 10010 => 01101 => 8
[2,2] => 1100 => 0011 => 8
[2,1,1] => 10110 => 01001 => 8
[1,1,1,1] => 11110 => 00001 => 10
[5] => 100000 => 011111 => 15
[4,1] => 100010 => 011101 => 12
[3,2] => 10100 => 01011 => 11
[3,1,1] => 100110 => 011001 => 11
[2,2,1] => 11010 => 00101 => 11
[2,1,1,1] => 101110 => 010001 => 12
[1,1,1,1,1] => 111110 => 000001 => 15
[6] => 1000000 => 0111111 => 21
[5,1] => 1000010 => 0111101 => 17
[4,2] => 100100 => 011011 => 15
[4,1,1] => 1000110 => 0111001 => 15
[3,3] => 11000 => 00111 => 15
[3,2,1] => 101010 => 010101 => 14
[3,1,1,1] => 1001110 => 0110001 => 15
[2,2,2] => 11100 => 00011 => 15
[2,2,1,1] => 110110 => 001001 => 15
[2,1,1,1,1] => 1011110 => 0100001 => 17
[1,1,1,1,1,1] => 1111110 => 0000001 => 21
[7] => 10000000 => 01111111 => 28
[6,1] => 10000010 => 01111101 => 23
[5,2] => 1000100 => 0111011 => 20
[5,1,1] => 10000110 => 01111001 => 20
[4,3] => 101000 => 010111 => 19
[4,2,1] => 1001010 => 0110101 => 18
[4,1,1,1] => 10001110 => 01110001 => 19
[3,3,1] => 110010 => 001101 => 18
[3,2,2] => 101100 => 010011 => 18
[3,2,1,1] => 1010110 => 0101001 => 18
[3,1,1,1,1] => 10011110 => 01100001 => 20
[2,2,2,1] => 111010 => 000101 => 19
[2,2,1,1,1] => 1101110 => 0010001 => 20
[2,1,1,1,1,1] => 10111110 => 01000001 => 23
[1,1,1,1,1,1,1] => 11111110 => 00000001 => 28
[8] => 100000000 => 011111111 => 36
[7,1] => 100000010 => 011111101 => 30
[6,2] => 10000100 => 01111011 => 26
[6,1,1] => 100000110 => 011111001 => 26
[5,3] => 1001000 => 0110111 => 24
[5,2,1] => 10001010 => 01110101 => 23
[5,1,1,1] => 100001110 => 011110001 => 24
[4,4] => 110000 => 001111 => 24
[4,3,1] => 1010010 => 0101101 => 22
[4,2,2] => 1001100 => 0110011 => 22
[4,2,1,1] => 10010110 => 01101001 => 22
[4,1,1,1,1] => 100011110 => 011100001 => 24
[3,3,2] => 110100 => 001011 => 22
[3,3,1,1] => 1100110 => 0011001 => 22
[3,2,2,1] => 1011010 => 0100101 => 22
[3,2,1,1,1] => 10101110 => 01010001 => 23
[3,1,1,1,1,1] => 100111110 => 011000001 => 26
[2,2,2,2] => 111100 => 000011 => 24
[2,2,2,1,1] => 1110110 => 0001001 => 24
[2,2,1,1,1,1] => 11011110 => 00100001 => 26
[2,1,1,1,1,1,1] => 101111110 => 010000001 => 30
[1,1,1,1,1,1,1,1] => 111111110 => 000000001 => 36
[7,2] => 100000100 => 011111011 => 33
[6,3] => 10001000 => 01110111 => 30
[6,2,1] => 100001010 => 011110101 => 29
[5,4] => 1010000 => 0101111 => 29
[5,3,1] => 10010010 => 01101101 => 27
[5,2,2] => 10001100 => 01110011 => 27
[5,2,1,1] => 100010110 => 011101001 => 27
[4,4,1] => 1100010 => 0011101 => 27
[4,3,2] => 1010100 => 0101011 => 26
[4,3,1,1] => 10100110 => 01011001 => 26
[4,2,2,1] => 10011010 => 01100101 => 26
[4,2,1,1,1] => 100101110 => 011010001 => 27
[3,3,3] => 111000 => 000111 => 27
[3,3,2,1] => 1101010 => 0010101 => 26
[3,3,1,1,1] => 11001110 => 00110001 => 27
[3,2,2,2] => 1011100 => 0100011 => 27
[3,2,2,1,1] => 10110110 => 01001001 => 27
[3,2,1,1,1,1] => 101011110 => 010100001 => 29
[2,2,2,2,1] => 1111010 => 0000101 => 29
[2,2,2,1,1,1] => 11101110 => 00010001 => 30
[2,2,1,1,1,1,1] => 110111110 => 001000001 => 33
[1,1,1,1,1,1,1,1,1] => 1111111110 => 0000000001 => 45
[7,3] => 100001000 => 011110111 => 37
[6,4] => 10010000 => 01101111 => 35
[6,3,1] => 100010010 => 011101101 => 33
[6,2,2] => 100001100 => 011110011 => 33
[5,5] => 1100000 => 0011111 => 35
[5,4,1] => 10100010 => 01011101 => 32
[5,3,2] => 10010100 => 01101011 => 31
[5,3,1,1] => 100100110 => 011011001 => 31
[5,2,2,1] => 100011010 => 011100101 => 31
[4,4,2] => 1100100 => 0011011 => 31
[4,4,1,1] => 11000110 => 00111001 => 31
[4,3,3] => 1011000 => 0100111 => 31
[4,3,2,1] => 10101010 => 01010101 => 30
>>> Load all 300 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The non-inversion sum of a binary word.
A pair $a < b$ is an noninversion of a binary word $w = w_1 \cdots w_n$ if $w_a < w_b$. The non-inversion sum is given by $\sum(b-a)$ over all non-inversions of $w$.
A pair $a < b$ is an noninversion of a binary word $w = w_1 \cdots w_n$ if $w_a < w_b$. The non-inversion sum is given by $\sum(b-a)$ over all non-inversions of $w$.
Map
complement
Description
Send a binary word to the word obtained by interchanging the two letters.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!