Identifier
-
Mp00095:
Integer partitions
—to binary word⟶
Binary words
St000347: Binary words ⟶ ℤ
Values
[1] => 10 => 1
[2] => 100 => 3
[1,1] => 110 => 3
[3] => 1000 => 6
[2,1] => 1010 => 5
[1,1,1] => 1110 => 6
[4] => 10000 => 10
[3,1] => 10010 => 8
[2,2] => 1100 => 8
[2,1,1] => 10110 => 8
[1,1,1,1] => 11110 => 10
[5] => 100000 => 15
[4,1] => 100010 => 12
[3,2] => 10100 => 11
[3,1,1] => 100110 => 11
[2,2,1] => 11010 => 11
[2,1,1,1] => 101110 => 12
[1,1,1,1,1] => 111110 => 15
[6] => 1000000 => 21
[5,1] => 1000010 => 17
[4,2] => 100100 => 15
[4,1,1] => 1000110 => 15
[3,3] => 11000 => 15
[3,2,1] => 101010 => 14
[3,1,1,1] => 1001110 => 15
[2,2,2] => 11100 => 15
[2,2,1,1] => 110110 => 15
[2,1,1,1,1] => 1011110 => 17
[1,1,1,1,1,1] => 1111110 => 21
[7] => 10000000 => 28
[6,1] => 10000010 => 23
[5,2] => 1000100 => 20
[5,1,1] => 10000110 => 20
[4,3] => 101000 => 19
[4,2,1] => 1001010 => 18
[4,1,1,1] => 10001110 => 19
[3,3,1] => 110010 => 18
[3,2,2] => 101100 => 18
[3,2,1,1] => 1010110 => 18
[3,1,1,1,1] => 10011110 => 20
[2,2,2,1] => 111010 => 19
[2,2,1,1,1] => 1101110 => 20
[2,1,1,1,1,1] => 10111110 => 23
[1,1,1,1,1,1,1] => 11111110 => 28
[8] => 100000000 => 36
[7,1] => 100000010 => 30
[6,2] => 10000100 => 26
[6,1,1] => 100000110 => 26
[5,3] => 1001000 => 24
[5,2,1] => 10001010 => 23
[5,1,1,1] => 100001110 => 24
[4,4] => 110000 => 24
[4,3,1] => 1010010 => 22
[4,2,2] => 1001100 => 22
[4,2,1,1] => 10010110 => 22
[4,1,1,1,1] => 100011110 => 24
[3,3,2] => 110100 => 22
[3,3,1,1] => 1100110 => 22
[3,2,2,1] => 1011010 => 22
[3,2,1,1,1] => 10101110 => 23
[3,1,1,1,1,1] => 100111110 => 26
[2,2,2,2] => 111100 => 24
[2,2,2,1,1] => 1110110 => 24
[2,2,1,1,1,1] => 11011110 => 26
[2,1,1,1,1,1,1] => 101111110 => 30
[1,1,1,1,1,1,1,1] => 111111110 => 36
[7,2] => 100000100 => 33
[6,3] => 10001000 => 30
[6,2,1] => 100001010 => 29
[5,4] => 1010000 => 29
[5,3,1] => 10010010 => 27
[5,2,2] => 10001100 => 27
[5,2,1,1] => 100010110 => 27
[4,4,1] => 1100010 => 27
[4,3,2] => 1010100 => 26
[4,3,1,1] => 10100110 => 26
[4,2,2,1] => 10011010 => 26
[4,2,1,1,1] => 100101110 => 27
[3,3,3] => 111000 => 27
[3,3,2,1] => 1101010 => 26
[3,3,1,1,1] => 11001110 => 27
[3,2,2,2] => 1011100 => 27
[3,2,2,1,1] => 10110110 => 27
[3,2,1,1,1,1] => 101011110 => 29
[2,2,2,2,1] => 1111010 => 29
[2,2,2,1,1,1] => 11101110 => 30
[2,2,1,1,1,1,1] => 110111110 => 33
[7,3] => 100001000 => 37
[6,4] => 10010000 => 35
[6,3,1] => 100010010 => 33
[6,2,2] => 100001100 => 33
[5,5] => 1100000 => 35
[5,4,1] => 10100010 => 32
[5,3,2] => 10010100 => 31
[5,3,1,1] => 100100110 => 31
[5,2,2,1] => 100011010 => 31
[4,4,2] => 1100100 => 31
[4,4,1,1] => 11000110 => 31
[4,3,3] => 1011000 => 31
[4,3,2,1] => 10101010 => 30
[4,3,1,1,1] => 101001110 => 31
>>> Load all 250 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The inversion sum of a binary word.
A pair a<b is an inversion of a binary word w=w1⋯wn if wa=1>0=wb. The inversion sum is given by ∑(b−a) over all inversions of π.
A pair a<b is an inversion of a binary word w=w1⋯wn if wa=1>0=wb. The inversion sum is given by ∑(b−a) over all inversions of π.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!