Identifier
-
Mp00044:
Integer partitions
—conjugate⟶
Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
St000336: Standard tableaux ⟶ ℤ
Values
[1] => [1] => [[1]] => 0
[2] => [1,1] => [[1],[2]] => 1
[1,1] => [2] => [[1,2]] => 0
[3] => [1,1,1] => [[1],[2],[3]] => 3
[2,1] => [2,1] => [[1,3],[2]] => 1
[1,1,1] => [3] => [[1,2,3]] => 0
[4] => [1,1,1,1] => [[1],[2],[3],[4]] => 6
[3,1] => [2,1,1] => [[1,4],[2],[3]] => 3
[2,2] => [2,2] => [[1,2],[3,4]] => 2
[2,1,1] => [3,1] => [[1,3,4],[2]] => 1
[1,1,1,1] => [4] => [[1,2,3,4]] => 0
[5] => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 10
[4,1] => [2,1,1,1] => [[1,5],[2],[3],[4]] => 6
[3,2] => [2,2,1] => [[1,3],[2,5],[4]] => 4
[3,1,1] => [3,1,1] => [[1,4,5],[2],[3]] => 3
[2,2,1] => [3,2] => [[1,2,5],[3,4]] => 2
[2,1,1,1] => [4,1] => [[1,3,4,5],[2]] => 1
[1,1,1,1,1] => [5] => [[1,2,3,4,5]] => 0
[6] => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 15
[5,1] => [2,1,1,1,1] => [[1,6],[2],[3],[4],[5]] => 10
[4,2] => [2,2,1,1] => [[1,4],[2,6],[3],[5]] => 7
[4,1,1] => [3,1,1,1] => [[1,5,6],[2],[3],[4]] => 6
[3,3] => [2,2,2] => [[1,2],[3,4],[5,6]] => 6
[3,2,1] => [3,2,1] => [[1,3,6],[2,5],[4]] => 4
[3,1,1,1] => [4,1,1] => [[1,4,5,6],[2],[3]] => 3
[2,2,2] => [3,3] => [[1,2,3],[4,5,6]] => 3
[2,2,1,1] => [4,2] => [[1,2,5,6],[3,4]] => 2
[2,1,1,1,1] => [5,1] => [[1,3,4,5,6],[2]] => 1
[1,1,1,1,1,1] => [6] => [[1,2,3,4,5,6]] => 0
[7] => [1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => 21
[6,1] => [2,1,1,1,1,1] => [[1,7],[2],[3],[4],[5],[6]] => 15
[5,2] => [2,2,1,1,1] => [[1,5],[2,7],[3],[4],[6]] => 11
[5,1,1] => [3,1,1,1,1] => [[1,6,7],[2],[3],[4],[5]] => 10
[4,3] => [2,2,2,1] => [[1,3],[2,5],[4,7],[6]] => 9
[4,2,1] => [3,2,1,1] => [[1,4,7],[2,6],[3],[5]] => 7
[4,1,1,1] => [4,1,1,1] => [[1,5,6,7],[2],[3],[4]] => 6
[3,3,1] => [3,2,2] => [[1,2,7],[3,4],[5,6]] => 6
[3,2,2] => [3,3,1] => [[1,3,4],[2,6,7],[5]] => 5
[3,2,1,1] => [4,2,1] => [[1,3,6,7],[2,5],[4]] => 4
[3,1,1,1,1] => [5,1,1] => [[1,4,5,6,7],[2],[3]] => 3
[2,2,2,1] => [4,3] => [[1,2,3,7],[4,5,6]] => 3
[2,2,1,1,1] => [5,2] => [[1,2,5,6,7],[3,4]] => 2
[2,1,1,1,1,1] => [6,1] => [[1,3,4,5,6,7],[2]] => 1
[1,1,1,1,1,1,1] => [7] => [[1,2,3,4,5,6,7]] => 0
[8] => [1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => 28
[7,1] => [2,1,1,1,1,1,1] => [[1,8],[2],[3],[4],[5],[6],[7]] => 21
[6,2] => [2,2,1,1,1,1] => [[1,6],[2,8],[3],[4],[5],[7]] => 16
[6,1,1] => [3,1,1,1,1,1] => [[1,7,8],[2],[3],[4],[5],[6]] => 15
[5,3] => [2,2,2,1,1] => [[1,4],[2,6],[3,8],[5],[7]] => 13
[5,2,1] => [3,2,1,1,1] => [[1,5,8],[2,7],[3],[4],[6]] => 11
[5,1,1,1] => [4,1,1,1,1] => [[1,6,7,8],[2],[3],[4],[5]] => 10
[4,4] => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 12
[4,3,1] => [3,2,2,1] => [[1,3,8],[2,5],[4,7],[6]] => 9
[4,2,2] => [3,3,1,1] => [[1,4,5],[2,7,8],[3],[6]] => 8
[4,2,1,1] => [4,2,1,1] => [[1,4,7,8],[2,6],[3],[5]] => 7
[4,1,1,1,1] => [5,1,1,1] => [[1,5,6,7,8],[2],[3],[4]] => 6
[3,3,2] => [3,3,2] => [[1,2,5],[3,4,8],[6,7]] => 7
[3,3,1,1] => [4,2,2] => [[1,2,7,8],[3,4],[5,6]] => 6
[3,2,2,1] => [4,3,1] => [[1,3,4,8],[2,6,7],[5]] => 5
[3,2,1,1,1] => [5,2,1] => [[1,3,6,7,8],[2,5],[4]] => 4
[3,1,1,1,1,1] => [6,1,1] => [[1,4,5,6,7,8],[2],[3]] => 3
[2,2,2,2] => [4,4] => [[1,2,3,4],[5,6,7,8]] => 4
[2,2,2,1,1] => [5,3] => [[1,2,3,7,8],[4,5,6]] => 3
[2,2,1,1,1,1] => [6,2] => [[1,2,5,6,7,8],[3,4]] => 2
[2,1,1,1,1,1,1] => [7,1] => [[1,3,4,5,6,7,8],[2]] => 1
[1,1,1,1,1,1,1,1] => [8] => [[1,2,3,4,5,6,7,8]] => 0
[9] => [1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 36
[8,1] => [2,1,1,1,1,1,1,1] => [[1,9],[2],[3],[4],[5],[6],[7],[8]] => 28
[7,2] => [2,2,1,1,1,1,1] => [[1,7],[2,9],[3],[4],[5],[6],[8]] => 22
[7,1,1] => [3,1,1,1,1,1,1] => [[1,8,9],[2],[3],[4],[5],[6],[7]] => 21
[6,3] => [2,2,2,1,1,1] => [[1,5],[2,7],[3,9],[4],[6],[8]] => 18
[6,2,1] => [3,2,1,1,1,1] => [[1,6,9],[2,8],[3],[4],[5],[7]] => 16
[6,1,1,1] => [4,1,1,1,1,1] => [[1,7,8,9],[2],[3],[4],[5],[6]] => 15
[5,4] => [2,2,2,2,1] => [[1,3],[2,5],[4,7],[6,9],[8]] => 16
[5,3,1] => [3,2,2,1,1] => [[1,4,9],[2,6],[3,8],[5],[7]] => 13
[5,2,2] => [3,3,1,1,1] => [[1,5,6],[2,8,9],[3],[4],[7]] => 12
[5,2,1,1] => [4,2,1,1,1] => [[1,5,8,9],[2,7],[3],[4],[6]] => 11
[5,1,1,1,1] => [5,1,1,1,1] => [[1,6,7,8,9],[2],[3],[4],[5]] => 10
[4,4,1] => [3,2,2,2] => [[1,2,9],[3,4],[5,6],[7,8]] => 12
[4,3,2] => [3,3,2,1] => [[1,3,6],[2,5,9],[4,8],[7]] => 10
[4,3,1,1] => [4,2,2,1] => [[1,3,8,9],[2,5],[4,7],[6]] => 9
[4,2,2,1] => [4,3,1,1] => [[1,4,5,9],[2,7,8],[3],[6]] => 8
[4,2,1,1,1] => [5,2,1,1] => [[1,4,7,8,9],[2,6],[3],[5]] => 7
[4,1,1,1,1,1] => [6,1,1,1] => [[1,5,6,7,8,9],[2],[3],[4]] => 6
[3,3,3] => [3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => 9
[3,3,2,1] => [4,3,2] => [[1,2,5,9],[3,4,8],[6,7]] => 7
[3,3,1,1,1] => [5,2,2] => [[1,2,7,8,9],[3,4],[5,6]] => 6
[3,2,2,2] => [4,4,1] => [[1,3,4,5],[2,7,8,9],[6]] => 6
[3,2,2,1,1] => [5,3,1] => [[1,3,4,8,9],[2,6,7],[5]] => 5
[3,2,1,1,1,1] => [6,2,1] => [[1,3,6,7,8,9],[2,5],[4]] => 4
[3,1,1,1,1,1,1] => [7,1,1] => [[1,4,5,6,7,8,9],[2],[3]] => 3
[2,2,2,2,1] => [5,4] => [[1,2,3,4,9],[5,6,7,8]] => 4
[2,2,2,1,1,1] => [6,3] => [[1,2,3,7,8,9],[4,5,6]] => 3
[2,2,1,1,1,1,1] => [7,2] => [[1,2,5,6,7,8,9],[3,4]] => 2
[2,1,1,1,1,1,1,1] => [8,1] => [[1,3,4,5,6,7,8,9],[2]] => 1
[1,1,1,1,1,1,1,1,1] => [9] => [[1,2,3,4,5,6,7,8,9]] => 0
[10] => [1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => 45
[9,1] => [2,1,1,1,1,1,1,1,1] => [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]] => 36
[8,2] => [2,2,1,1,1,1,1,1] => [[1,8],[2,10],[3],[4],[5],[6],[7],[9]] => 29
[8,1,1] => [3,1,1,1,1,1,1,1] => [[1,9,10],[2],[3],[4],[5],[6],[7],[8]] => 28
[7,3] => [2,2,2,1,1,1,1] => [[1,6],[2,8],[3,10],[4],[5],[7],[9]] => 24
>>> Load all 191 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The leg major index of a standard tableau.
The leg length of a cell is the number of cells strictly below in the same column. This statistic is the sum of all leg lengths. Therefore, this is actually a statistic on the underlying integer partition.
It happens to coincide with the (leg) major index of a tabloid restricted to standard Young tableaux, defined as follows: the descent set of a tabloid is the set of cells, not in the top row, whose entry is strictly larger than the entry directly above it. The leg major index is the sum of the leg lengths of the descents plus the number of descents.
The leg length of a cell is the number of cells strictly below in the same column. This statistic is the sum of all leg lengths. Therefore, this is actually a statistic on the underlying integer partition.
It happens to coincide with the (leg) major index of a tabloid restricted to standard Young tableaux, defined as follows: the descent set of a tabloid is the set of cells, not in the top row, whose entry is strictly larger than the entry directly above it. The leg major index is the sum of the leg lengths of the descents plus the number of descents.
Map
reading tableau
Description
Return the RSK recording tableau of the reading word of the (standard) tableau $T$ labeled down (in English convention) each column to the shape of a partition.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!