Identifier
-
Mp00193:
Lattices
—to poset⟶
Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000306: Dyck paths ⟶ ℤ (values match St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn−1] such that n=c0<ci for all i>0 a Dyck path as follows: )
Values
([],1) => ([],1) => [1] => [1,0,1,0] => 1
([(0,1)],2) => ([(0,1)],2) => [2] => [1,1,0,0,1,0] => 1
([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => [3] => [1,1,1,0,0,0,1,0] => 1
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => [3,1] => [1,1,0,1,0,0,1,0] => 2
([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,1,0,0,1,0] => 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 2
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => [4,1] => [1,1,1,0,1,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,1,1,0,0,1,0,0] => 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => [4,1,1] => [1,1,0,1,1,0,0,0,1,0] => 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => [5,1] => [1,1,1,1,0,1,0,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,0,1,1,1,1,0,0,1,0,0,0] => 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7) => ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => [5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => [5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7) => ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => [5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => [4,1,1,1] => [1,0,1,1,1,0,0,0,1,0] => 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 2
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => [5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => [5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => [5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 2
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 2
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => [4,2,1] => [1,1,0,1,0,1,0,0,1,0] => 2
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => [5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7) => [5,1,1] => [1,1,1,0,1,1,0,0,0,0,1,0] => 2
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => [5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => [5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => [5,2] => [1,1,1,1,0,0,1,0,0,0,1,0] => 2
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => [6,1] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => 2
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8) => ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8) => [5,2,1] => [1,1,1,0,1,0,1,0,0,0,1,0] => 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => [6,2] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8) => [4,1,1,1,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8) => [4,1,1,1,1] => [1,0,1,1,1,1,0,0,0,1,0,0] => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => [5,1,1,1] => [1,1,0,1,1,1,0,0,0,0,1,0] => 2
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => [6,2] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8) => [4,2,1,1] => [1,0,1,1,0,1,0,0,1,0] => 3
([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => [6,2] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => 2
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8) => [5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => 2
([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => [6,2] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => 2
([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8) => [5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => 2
([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => [6,2] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => 2
([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8) => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8) => [5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => 2
([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8) => ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8) => [7,1] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8) => [4,2,2] => [1,1,0,0,1,1,0,0,1,0] => 2
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => [6,2] => [1,1,1,1,1,0,0,1,0,0,0,0,1,0] => 2
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0] => 1
([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9) => [5,2,2] => [1,1,1,0,0,1,1,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9) => [5,2,1,1] => [1,1,0,1,1,0,1,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9) => [5,2,1,1] => [1,1,0,1,1,0,1,0,0,0,1,0] => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9) => [5,2,1,1] => [1,1,0,1,1,0,1,0,0,0,1,0] => 2
([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9) => [6,3] => [1,1,1,1,1,0,0,0,1,0,0,0,1,0] => 2
([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9) => [6,3] => [1,1,1,1,1,0,0,0,1,0,0,0,1,0] => 2
>>> Load all 146 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The bounce count of a Dyck path.
For a Dyck path D of length 2n, this is the number of points (i,i) for 1≤i<n that are touching points of the bounce path of D.
For a Dyck path D of length 2n, this is the number of points (i,i) for 1≤i<n that are touching points of the bounce path of D.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
Map
to poset
Description
Return the poset corresponding to the lattice.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!