Processing math: 100%

Identifier
Values
[1] => 10 => 10 => 1
[2] => 100 => 010 => 1
[1,1] => 110 => 110 => 2
[3] => 1000 => 0010 => 1
[2,1] => 1010 => 1100 => 4
[1,1,1] => 1110 => 1110 => 3
[4] => 10000 => 00010 => 1
[3,1] => 10010 => 10100 => 5
[2,2] => 1100 => 0110 => 2
[2,1,1] => 10110 => 11010 => 5
[1,1,1,1] => 11110 => 11110 => 4
[5] => 100000 => 000010 => 1
[4,1] => 100010 => 100100 => 6
[3,2] => 10100 => 01100 => 4
[3,1,1] => 100110 => 101010 => 6
[2,2,1] => 11010 => 11100 => 6
[2,1,1,1] => 101110 => 110110 => 6
[1,1,1,1,1] => 111110 => 111110 => 5
[6] => 1000000 => 0000010 => 1
[5,1] => 1000010 => 1000100 => 7
[4,2] => 100100 => 010100 => 5
[4,1,1] => 1000110 => 1001010 => 7
[3,3] => 11000 => 00110 => 2
[3,2,1] => 101010 => 111000 => 9
[3,1,1,1] => 1001110 => 1010110 => 7
[2,2,2] => 11100 => 01110 => 3
[2,2,1,1] => 110110 => 111010 => 7
[2,1,1,1,1] => 1011110 => 1101110 => 7
[1,1,1,1,1,1] => 1111110 => 1111110 => 6
[7] => 10000000 => 00000010 => 1
[6,1] => 10000010 => 10000100 => 8
[5,2] => 1000100 => 0100100 => 6
[5,1,1] => 10000110 => 10001010 => 8
[4,3] => 101000 => 001100 => 4
[4,2,1] => 1001010 => 1101000 => 11
[4,1,1,1] => 10001110 => 10010110 => 8
[3,3,1] => 110010 => 101100 => 7
[3,2,2] => 101100 => 011010 => 5
[3,2,1,1] => 1010110 => 1110010 => 10
[3,1,1,1,1] => 10011110 => 10101110 => 8
[2,2,2,1] => 111010 => 111100 => 8
[2,2,1,1,1] => 1101110 => 1110110 => 8
[2,1,1,1,1,1] => 10111110 => 11011110 => 8
[1,1,1,1,1,1,1] => 11111110 => 11111110 => 7
[8] => 100000000 => 000000010 => 1
[7,1] => 100000010 => 100000100 => 9
[6,2] => 10000100 => 01000100 => 7
[6,1,1] => 100000110 => 100001010 => 9
[5,3] => 1001000 => 0010100 => 5
[5,2,1] => 10001010 => 11001000 => 13
[5,1,1,1] => 100001110 => 100010110 => 9
[4,4] => 110000 => 000110 => 2
[4,3,1] => 1010010 => 1011000 => 10
[4,2,2] => 1001100 => 0101010 => 6
[4,2,1,1] => 10010110 => 11010010 => 12
[4,1,1,1,1] => 100011110 => 100101110 => 9
[3,3,2] => 110100 => 011100 => 6
[3,3,1,1] => 1100110 => 1011010 => 8
[3,2,2,1] => 1011010 => 1110100 => 11
[3,2,1,1,1] => 10101110 => 11100110 => 11
[3,1,1,1,1,1] => 100111110 => 101011110 => 9
[2,2,2,2] => 111100 => 011110 => 4
[2,2,2,1,1] => 1110110 => 1111010 => 9
[2,2,1,1,1,1] => 11011110 => 11101110 => 9
[2,1,1,1,1,1,1] => 101111110 => 110111110 => 9
[1,1,1,1,1,1,1,1] => 111111110 => 111111110 => 8
[9] => 1000000000 => 0000000010 => 1
[8,1] => 1000000010 => 1000000100 => 10
[7,2] => 100000100 => 010000100 => 8
[7,1,1] => 1000000110 => 1000001010 => 10
[6,3] => 10001000 => 00100100 => 6
[6,2,1] => 100001010 => 110001000 => 15
[6,1,1,1] => 1000001110 => 1000010110 => 10
[5,4] => 1010000 => 0001100 => 4
[5,3,1] => 10010010 => 10101000 => 12
[5,2,2] => 10001100 => 01001010 => 7
[5,2,1,1] => 100010110 => 110010010 => 14
[5,1,1,1,1] => 1000011110 => 1000101110 => 10
[4,4,1] => 1100010 => 1001100 => 8
[4,3,2] => 1010100 => 0111000 => 9
[4,3,1,1] => 10100110 => 10110010 => 11
[4,2,2,1] => 10011010 => 11010100 => 13
[4,2,1,1,1] => 100101110 => 110100110 => 13
[4,1,1,1,1,1] => 1000111110 => 1001011110 => 10
[3,3,3] => 111000 => 001110 => 3
[3,3,2,1] => 1101010 => 1111000 => 12
[3,3,1,1,1] => 11001110 => 10110110 => 9
[3,2,2,2] => 1011100 => 0110110 => 6
[3,2,2,1,1] => 10110110 => 11101010 => 12
[3,2,1,1,1,1] => 101011110 => 111001110 => 12
[3,1,1,1,1,1,1] => 1001111110 => 1010111110 => 10
[2,2,2,2,1] => 1111010 => 1111100 => 10
[2,2,2,1,1,1] => 11101110 => 11110110 => 10
[2,2,1,1,1,1,1] => 110111110 => 111011110 => 10
[2,1,1,1,1,1,1,1] => 1011111110 => 1101111110 => 10
[1,1,1,1,1,1,1,1,1] => 1111111110 => 1111111110 => 9
[10] => 10000000000 => 00000000010 => 1
[9,1] => 10000000010 => 10000000100 => 11
[8,2] => 1000000100 => 0100000100 => 9
[8,1,1] => 10000000110 => 10000001010 => 11
[7,3] => 100001000 => 001000100 => 7
>>> Load all 374 entries. <<<
[7,2,1] => 1000001010 => 1100001000 => 17
[7,1,1,1] => 10000001110 => 10000010110 => 11
[6,4] => 10010000 => 00010100 => 5
[6,3,1] => 100010010 => 101001000 => 14
[6,2,2] => 100001100 => 010001010 => 8
[6,2,1,1] => 1000010110 => 1100010010 => 16
[6,1,1,1,1] => 10000011110 => 10000101110 => 11
[5,5] => 1100000 => 0000110 => 2
[5,4,1] => 10100010 => 10011000 => 11
[5,3,2] => 10010100 => 01101000 => 11
[5,3,1,1] => 100100110 => 101010010 => 13
[5,2,2,1] => 100011010 => 110010100 => 15
[5,2,1,1,1] => 1000101110 => 1100100110 => 15
[5,1,1,1,1,1] => 10000111110 => 10001011110 => 11
[4,4,2] => 1100100 => 0101100 => 7
[4,4,1,1] => 11000110 => 10011010 => 9
[4,3,3] => 1011000 => 0011010 => 5
[4,3,2,1] => 10101010 => 11110000 => 16
[4,3,1,1,1] => 101001110 => 101100110 => 12
[4,2,2,2] => 10011100 => 01010110 => 7
[4,2,2,1,1] => 100110110 => 110101010 => 14
[4,2,1,1,1,1] => 1001011110 => 1101001110 => 14
[4,1,1,1,1,1,1] => 10001111110 => 10010111110 => 11
[3,3,3,1] => 1110010 => 1011100 => 9
[3,3,2,2] => 1101100 => 0111010 => 7
[3,3,2,1,1] => 11010110 => 11110010 => 13
[3,3,1,1,1,1] => 110011110 => 101101110 => 10
[3,2,2,2,1] => 10111010 => 11101100 => 13
[3,2,2,1,1,1] => 101101110 => 111010110 => 13
[3,2,1,1,1,1,1] => 1010111110 => 1110011110 => 13
[3,1,1,1,1,1,1,1] => 10011111110 => 10101111110 => 11
[2,2,2,2,2] => 1111100 => 0111110 => 5
[2,2,2,2,1,1] => 11110110 => 11111010 => 11
[2,2,2,1,1,1,1] => 111011110 => 111101110 => 11
[2,2,1,1,1,1,1,1] => 1101111110 => 1110111110 => 11
[2,1,1,1,1,1,1,1,1] => 10111111110 => 11011111110 => 11
[1,1,1,1,1,1,1,1,1,1] => 11111111110 => 11111111110 => 10
[8,3] => 1000001000 => 0010000100 => 8
[7,4] => 100010000 => 000100100 => 6
[6,5] => 10100000 => 00001100 => 4
[6,4,1] => 100100010 => 100101000 => 13
[6,3,2] => 100010100 => 011001000 => 13
[5,5,1] => 11000010 => 10001100 => 9
[5,4,2] => 10100100 => 01011000 => 10
[5,4,1,1] => 101000110 => 100110010 => 12
[5,3,3] => 10011000 => 00101010 => 6
[5,3,2,1] => 100101010 => 111010000 => 19
[5,3,1,1,1] => 1001001110 => 1010100110 => 14
[5,2,2,2] => 100011100 => 010010110 => 8
[5,2,2,1,1] => 1000110110 => 1100101010 => 16
[4,4,3] => 1101000 => 0011100 => 6
[4,4,2,1] => 11001010 => 11011000 => 14
[4,4,1,1,1] => 110001110 => 100110110 => 10
[4,3,3,1] => 10110010 => 10110100 => 12
[4,3,2,2] => 10101100 => 01110010 => 10
[4,3,2,1,1] => 101010110 => 111100010 => 17
[4,2,2,2,1] => 100111010 => 110101100 => 15
[3,3,3,2] => 1110100 => 0111100 => 8
[3,3,3,1,1] => 11100110 => 10111010 => 10
[3,3,2,2,1] => 11011010 => 11110100 => 14
[3,3,2,1,1,1] => 110101110 => 111100110 => 14
[3,2,2,2,2] => 10111100 => 01101110 => 7
[3,2,2,2,1,1] => 101110110 => 111011010 => 14
[2,2,2,2,2,1] => 11111010 => 11111100 => 12
[2,2,2,2,1,1,1] => 111101110 => 111110110 => 12
[8,4] => 1000010000 => 0001000100 => 7
[7,5] => 100100000 => 000010100 => 5
[6,6] => 11000000 => 00000110 => 2
[6,5,1] => 101000010 => 100011000 => 12
[6,4,2] => 100100100 => 010101000 => 12
[6,3,3] => 100011000 => 001001010 => 7
[5,5,2] => 11000100 => 01001100 => 8
[5,5,1,1] => 110000110 => 100011010 => 10
[5,4,3] => 10101000 => 00111000 => 9
[5,4,2,1] => 101001010 => 110110000 => 18
[5,4,1,1,1] => 1010001110 => 1001100110 => 13
[5,3,3,1] => 100110010 => 101010100 => 14
[5,3,2,2] => 100101100 => 011010010 => 12
[5,3,2,1,1] => 1001010110 => 1110100010 => 20
[5,2,2,2,1] => 1000111010 => 1100101100 => 17
[4,4,4] => 1110000 => 0001110 => 3
[4,4,3,1] => 11010010 => 10111000 => 13
[4,4,2,2] => 11001100 => 01011010 => 8
[4,4,2,1,1] => 110010110 => 110110010 => 15
[4,3,3,2] => 10110100 => 01110100 => 11
[4,3,3,1,1] => 101100110 => 101101010 => 13
[4,3,2,2,1] => 101011010 => 111100100 => 18
[4,2,2,2,2] => 100111100 => 010101110 => 8
[3,3,3,3] => 1111000 => 0011110 => 4
[3,3,3,2,1] => 11101010 => 11111000 => 15
[3,3,3,1,1,1] => 111001110 => 101110110 => 11
[3,3,2,2,2] => 11011100 => 01110110 => 8
[3,3,2,2,1,1] => 110110110 => 111101010 => 15
[3,2,2,2,2,1] => 101111010 => 111011100 => 15
[2,2,2,2,2,2] => 11111100 => 01111110 => 6
[2,2,2,2,2,1,1] => 111110110 => 111111010 => 13
[9,4] => 10000010000 => 00010000100 => 8
[8,5] => 1000100000 => 0000100100 => 6
[8,4,1] => 10000100010 => 10010001000 => 17
[7,6] => 101000000 => 000001100 => 4
[7,3,3] => 1000011000 => 0010001010 => 8
[6,6,1] => 110000010 => 100001100 => 10
[6,5,2] => 101000100 => 010011000 => 11
[6,4,3] => 100101000 => 001101000 => 11
[5,5,3] => 11001000 => 00101100 => 7
[5,5,2,1] => 110001010 => 110011000 => 16
[5,5,1,1,1] => 1100001110 => 1000110110 => 11
[5,4,4] => 10110000 => 00011010 => 5
[5,4,3,1] => 101010010 => 101110000 => 17
[5,4,2,2] => 101001100 => 010110010 => 11
[5,4,2,1,1] => 1010010110 => 1101100010 => 19
[5,3,3,2] => 100110100 => 011010100 => 13
[5,3,3,1,1] => 1001100110 => 1010101010 => 15
[5,3,2,2,1] => 1001011010 => 1110100100 => 21
[4,4,4,1] => 11100010 => 10011100 => 10
[4,4,3,2] => 11010100 => 01111000 => 12
[4,4,3,1,1] => 110100110 => 101110010 => 14
[4,4,2,2,1] => 110011010 => 110110100 => 16
[4,3,3,3] => 10111000 => 00110110 => 6
[4,3,3,2,1] => 101101010 => 111101000 => 19
[4,3,2,2,2] => 101011100 => 011100110 => 11
[3,3,3,3,1] => 11110010 => 10111100 => 11
[3,3,3,2,2] => 11101100 => 01111010 => 9
[3,3,3,2,1,1] => 111010110 => 111110010 => 16
[3,3,2,2,2,1] => 110111010 => 111101100 => 16
[3,2,2,2,2,2] => 101111100 => 011011110 => 8
[2,2,2,2,2,2,1] => 111111010 => 111111100 => 14
[8,6] => 1001000000 => 0000010100 => 5
[8,5,1] => 10001000010 => 10001001000 => 16
[8,4,2] => 10000100100 => 01010001000 => 16
[7,7] => 110000000 => 000000110 => 2
[6,6,2] => 110000100 => 010001100 => 9
[6,5,3] => 101001000 => 001011000 => 10
[6,4,4] => 100110000 => 000101010 => 6
[5,5,4] => 11010000 => 00011100 => 6
[5,5,3,1] => 110010010 => 101011000 => 15
[5,5,2,2] => 110001100 => 010011010 => 9
[5,4,4,1] => 101100010 => 100110100 => 13
[5,4,3,2] => 101010100 => 011110000 => 16
[5,4,3,1,1] => 1010100110 => 1011100010 => 18
[5,4,2,2,1] => 1010011010 => 1101100100 => 20
[5,3,3,3] => 100111000 => 001010110 => 7
[5,3,3,2,1] => 1001101010 => 1110101000 => 22
[4,4,4,2] => 11100100 => 01011100 => 9
[4,4,4,1,1] => 111000110 => 100111010 => 11
[4,4,3,3] => 11011000 => 00111010 => 7
[4,4,3,2,1] => 110101010 => 111110000 => 20
[4,4,2,2,2] => 110011100 => 010110110 => 9
[4,3,3,3,1] => 101110010 => 101101100 => 14
[4,3,3,2,2] => 101101100 => 011101010 => 12
[3,3,3,3,2] => 11110100 => 01111100 => 10
[3,3,3,3,1,1] => 111100110 => 101111010 => 12
[3,3,3,2,2,1] => 111011010 => 111110100 => 17
[3,3,2,2,2,2] => 110111100 => 011101110 => 9
[2,2,2,2,2,2,2] => 111111100 => 011111110 => 7
[8,7] => 1010000000 => 0000001100 => 4
[8,5,2] => 10001000100 => 01001001000 => 15
[7,4,4] => 1000110000 => 0001001010 => 7
[6,6,3] => 110001000 => 001001100 => 8
[6,5,4] => 101010000 => 000111000 => 9
[6,3,3,3] => 1000111000 => 0010010110 => 8
[6,3,2,2,1,1] => 100010110110 => 111001001010 => 25
[5,5,5] => 11100000 => 00001110 => 3
[5,5,4,1] => 110100010 => 100111000 => 14
[5,5,3,2] => 110010100 => 011011000 => 14
[5,5,3,1,1] => 1100100110 => 1010110010 => 16
[5,4,4,2] => 101100100 => 010110100 => 12
[5,4,3,3] => 101011000 => 001110010 => 10
[5,4,3,2,1] => 1010101010 => 1111100000 => 25
[5,3,3,2,2] => 1001101100 => 0110101010 => 14
[4,4,4,3] => 11101000 => 00111100 => 8
[4,4,4,2,1] => 111001010 => 110111000 => 17
[4,4,3,3,1] => 110110010 => 101110100 => 15
[4,4,3,2,2] => 110101100 => 011110010 => 13
[4,3,3,3,2] => 101110100 => 011101100 => 13
[3,3,3,3,3] => 11111000 => 00111110 => 5
[3,3,3,3,2,1] => 111101010 => 111111000 => 18
[3,3,3,2,2,2] => 111011100 => 011110110 => 10
[8,8] => 1100000000 => 0000000110 => 2
[8,6,2] => 10010000100 => 01000101000 => 14
[8,5,3] => 10001001000 => 00101001000 => 14
[6,6,4] => 110010000 => 000101100 => 7
[6,5,5] => 101100000 => 000011010 => 5
[6,4,2,2,1,1] => 100100110110 => 110101001010 => 24
[6,3,3,2,1,1] => 100011010110 => 111001010010 => 26
[6,3,2,2,2,1] => 100010111010 => 111001001100 => 26
[5,5,5,1] => 111000010 => 100011100 => 11
[5,5,4,2] => 110100100 => 010111000 => 13
[5,5,3,3] => 110011000 => 001011010 => 8
[5,5,3,2,1] => 1100101010 => 1110110000 => 23
[5,4,4,3] => 101101000 => 001110100 => 11
[5,4,4,2,1] => 1011001010 => 1101101000 => 21
[5,4,3,3,1] => 1010110010 => 1011100100 => 19
[5,4,3,2,2] => 1010101100 => 0111100010 => 17
[5,3,3,3,2] => 1001110100 => 0110101100 => 15
[4,4,4,4] => 11110000 => 00011110 => 4
[4,4,4,3,1] => 111010010 => 101111000 => 16
[4,4,4,2,2] => 111001100 => 010111010 => 10
[4,4,3,3,2] => 110110100 => 011110100 => 14
[4,3,3,3,3] => 101111000 => 001101110 => 7
[3,3,3,3,3,1] => 111110010 => 101111100 => 13
[3,3,3,3,2,2] => 111101100 => 011111010 => 11
[8,6,3] => 10010001000 => 00100101000 => 13
[7,7,3] => 1100001000 => 0010001100 => 9
[6,6,5] => 110100000 => 000011100 => 6
[6,5,2,2,1,1] => 101000110110 => 110011001010 => 23
[6,4,3,2,1,1] => 100101010110 => 111101000010 => 30
[6,4,2,2,2,1] => 100100111010 => 110101001100 => 25
[6,3,3,2,2,1] => 100011011010 => 111001010100 => 27
[5,5,5,2] => 111000100 => 010011100 => 10
[5,5,5,1,1] => 1110000110 => 1000111010 => 12
[5,5,4,3] => 110101000 => 001111000 => 12
[5,5,4,2,1] => 1101001010 => 1101110000 => 22
[5,5,3,3,1] => 1100110010 => 1010110100 => 17
[5,5,3,2,2] => 1100101100 => 0110110010 => 15
[5,4,4,4] => 101110000 => 000110110 => 6
[5,4,4,3,1] => 1011010010 => 1011101000 => 20
[5,4,4,2,2] => 1011001100 => 0101101010 => 13
[5,4,3,3,2] => 1010110100 => 0111100100 => 18
[5,3,3,3,3] => 1001111000 => 0010101110 => 8
[4,4,4,4,1] => 111100010 => 100111100 => 12
[4,4,4,3,2] => 111010100 => 011111000 => 15
[4,4,3,3,3] => 110111000 => 001110110 => 8
[3,3,3,3,3,2] => 111110100 => 011111100 => 12
[6,5,4,3,2,1] => 101010101010 => 111111000000 => 36
[6,4,4,3,2,1] => 100110101010 => 111101010000 => 33
[6,5,3,3,2,1] => 101001101010 => 111011001000 => 31
[6,4,3,3,2,1] => 100101101010 => 111101001000 => 32
[6,3,3,3,2,1] => 100011101010 => 111001011000 => 28
[6,5,4,2,2,1] => 101010011010 => 110111000100 => 29
[6,4,4,2,2,1] => 100110011010 => 110101010100 => 26
[6,5,3,2,2,1] => 101001011010 => 111011000100 => 30
[6,4,3,2,2,1] => 100101011010 => 111101000100 => 31
[6,5,2,2,2,1] => 101000111010 => 110011001100 => 24
[6,5,4,3,1,1] => 101010100110 => 101111000010 => 27
[6,4,4,3,1,1] => 100110100110 => 101101010010 => 24
[6,5,3,3,1,1] => 101001100110 => 101011001010 => 22
[6,4,3,3,1,1] => 100101100110 => 101101001010 => 23
[6,5,4,2,1,1] => 101010010110 => 110111000010 => 28
[6,4,4,2,1,1] => 100110010110 => 110101010010 => 25
[6,5,3,2,1,1] => 101001010110 => 111011000010 => 29
[5,5,4,3,2] => 1101010100 => 0111110000 => 20
[5,4,4,3,2] => 1011010100 => 0111101000 => 19
[5,5,3,3,2] => 1100110100 => 0110110100 => 16
[5,5,4,2,2] => 1101001100 => 0101110010 => 14
[5,5,4,3,1] => 1101010010 => 1011110000 => 21
[6,6,5,4,3,2] => 110101010100 => 011111100000 => 30
[6,5,5,4,3,2] => 101101010100 => 011111010000 => 29
[6,5,4,4,3,2] => 101011010100 => 011111001000 => 28
[6,5,4,3,3,2] => 101010110100 => 011111000100 => 27
[6,5,4,3,2,2] => 101010101100 => 011111000010 => 26
[6,6,5,4,3,1] => 110101010010 => 101111100000 => 31
[6,5,5,4,3,1] => 101101010010 => 101111010000 => 30
[6,6,5,3,2,1] => 110100101010 => 111011100000 => 33
[6,6,4,3,2,1] => 110010101010 => 111101100000 => 34
[5,4,4,4,3] => 1011101000 => 0011101100 => 13
[5,4,3,3,3] => 1010111000 => 0011100110 => 11
[4,4,4,4,2] => 111100100 => 010111100 => 11
[6,5,5,4] => 1011010000 => 0001110100 => 11
[7,6,5] => 1010100000 => 0000111000 => 9
[3,3,3,3,3,3] => 111111000 => 001111110 => 6
[4,4,4,4,4] => 111110000 => 000111110 => 5
[4,4,4,4,4,4] => 1111110000 => 0001111110 => 6
[5,5,5,5] => 111100000 => 000011110 => 4
[6,6,6,6] => 1111000000 => 0000011110 => 4
[6,6,6] => 111000000 => 000001110 => 3
[7,6,6] => 1011000000 => 0000011010 => 5
[5,5,5,5,5] => 1111100000 => 0000111110 => 5
[6,5,5,5] => 1011100000 => 0000110110 => 6
[5,4,4,4,4] => 1011110000 => 0001101110 => 7
[7,6,6,5,4,3,1] => 10110101010010 => 10111110100000 => 42
[7,7,6,5,4,3,1] => 11010101010010 => 10111111000000 => 43
[5,5,5,5,1] => 1111000010 => 1000111100 => 13
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of inversions of a binary word.
Map
Foata bijection
Description
The Foata bijection ϕ is a bijection on the set of words of given content (by a slight generalization of Section 2 in [1]).
Given a word w1w2...wn, compute the image inductively by starting with ϕ(w1)=w1. At the i-th step, if ϕ(w1w2...wi)=v1v2...vi, define ϕ(w1w2...wiwi+1) by placing wi+1 on the end of the word v1v2...vi and breaking the word up into blocks as follows.
  • If wi+1vi, place a vertical line to the right of each vk for which wi+1vk.
  • If wi+1<vi, place a vertical line to the right of each vk for which wi+1<vk.
In either case, place a vertical line at the start of the word as well. Now, within each block between vertical lines, cyclically shift the entries one place to the right.
For instance, to compute ϕ(4154223), the sequence of words is
  • 4,
  • |4|1 -- > 41,
  • |4|1|5 -- > 415,
  • |415|4 -- > 5414,
  • |5|4|14|2 -- > 54412,
  • |5441|2|2 -- > 154422,
  • |1|5442|2|3 -- > 1254423.
So ϕ(4154223)=1254423.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.