Identifier
-
Mp00095:
Integer partitions
—to binary word⟶
Binary words
Mp00096: Binary words —Foata bijection⟶ Binary words
St000293: Binary words ⟶ ℤ
Values
[1] => 10 => 10 => 1
[2] => 100 => 010 => 1
[1,1] => 110 => 110 => 2
[3] => 1000 => 0010 => 1
[2,1] => 1010 => 1100 => 4
[1,1,1] => 1110 => 1110 => 3
[4] => 10000 => 00010 => 1
[3,1] => 10010 => 10100 => 5
[2,2] => 1100 => 0110 => 2
[2,1,1] => 10110 => 11010 => 5
[1,1,1,1] => 11110 => 11110 => 4
[5] => 100000 => 000010 => 1
[4,1] => 100010 => 100100 => 6
[3,2] => 10100 => 01100 => 4
[3,1,1] => 100110 => 101010 => 6
[2,2,1] => 11010 => 11100 => 6
[2,1,1,1] => 101110 => 110110 => 6
[1,1,1,1,1] => 111110 => 111110 => 5
[6] => 1000000 => 0000010 => 1
[5,1] => 1000010 => 1000100 => 7
[4,2] => 100100 => 010100 => 5
[4,1,1] => 1000110 => 1001010 => 7
[3,3] => 11000 => 00110 => 2
[3,2,1] => 101010 => 111000 => 9
[3,1,1,1] => 1001110 => 1010110 => 7
[2,2,2] => 11100 => 01110 => 3
[2,2,1,1] => 110110 => 111010 => 7
[2,1,1,1,1] => 1011110 => 1101110 => 7
[1,1,1,1,1,1] => 1111110 => 1111110 => 6
[7] => 10000000 => 00000010 => 1
[6,1] => 10000010 => 10000100 => 8
[5,2] => 1000100 => 0100100 => 6
[5,1,1] => 10000110 => 10001010 => 8
[4,3] => 101000 => 001100 => 4
[4,2,1] => 1001010 => 1101000 => 11
[4,1,1,1] => 10001110 => 10010110 => 8
[3,3,1] => 110010 => 101100 => 7
[3,2,2] => 101100 => 011010 => 5
[3,2,1,1] => 1010110 => 1110010 => 10
[3,1,1,1,1] => 10011110 => 10101110 => 8
[2,2,2,1] => 111010 => 111100 => 8
[2,2,1,1,1] => 1101110 => 1110110 => 8
[2,1,1,1,1,1] => 10111110 => 11011110 => 8
[1,1,1,1,1,1,1] => 11111110 => 11111110 => 7
[8] => 100000000 => 000000010 => 1
[7,1] => 100000010 => 100000100 => 9
[6,2] => 10000100 => 01000100 => 7
[6,1,1] => 100000110 => 100001010 => 9
[5,3] => 1001000 => 0010100 => 5
[5,2,1] => 10001010 => 11001000 => 13
[5,1,1,1] => 100001110 => 100010110 => 9
[4,4] => 110000 => 000110 => 2
[4,3,1] => 1010010 => 1011000 => 10
[4,2,2] => 1001100 => 0101010 => 6
[4,2,1,1] => 10010110 => 11010010 => 12
[4,1,1,1,1] => 100011110 => 100101110 => 9
[3,3,2] => 110100 => 011100 => 6
[3,3,1,1] => 1100110 => 1011010 => 8
[3,2,2,1] => 1011010 => 1110100 => 11
[3,2,1,1,1] => 10101110 => 11100110 => 11
[3,1,1,1,1,1] => 100111110 => 101011110 => 9
[2,2,2,2] => 111100 => 011110 => 4
[2,2,2,1,1] => 1110110 => 1111010 => 9
[2,2,1,1,1,1] => 11011110 => 11101110 => 9
[2,1,1,1,1,1,1] => 101111110 => 110111110 => 9
[1,1,1,1,1,1,1,1] => 111111110 => 111111110 => 8
[9] => 1000000000 => 0000000010 => 1
[8,1] => 1000000010 => 1000000100 => 10
[7,2] => 100000100 => 010000100 => 8
[7,1,1] => 1000000110 => 1000001010 => 10
[6,3] => 10001000 => 00100100 => 6
[6,2,1] => 100001010 => 110001000 => 15
[6,1,1,1] => 1000001110 => 1000010110 => 10
[5,4] => 1010000 => 0001100 => 4
[5,3,1] => 10010010 => 10101000 => 12
[5,2,2] => 10001100 => 01001010 => 7
[5,2,1,1] => 100010110 => 110010010 => 14
[5,1,1,1,1] => 1000011110 => 1000101110 => 10
[4,4,1] => 1100010 => 1001100 => 8
[4,3,2] => 1010100 => 0111000 => 9
[4,3,1,1] => 10100110 => 10110010 => 11
[4,2,2,1] => 10011010 => 11010100 => 13
[4,2,1,1,1] => 100101110 => 110100110 => 13
[4,1,1,1,1,1] => 1000111110 => 1001011110 => 10
[3,3,3] => 111000 => 001110 => 3
[3,3,2,1] => 1101010 => 1111000 => 12
[3,3,1,1,1] => 11001110 => 10110110 => 9
[3,2,2,2] => 1011100 => 0110110 => 6
[3,2,2,1,1] => 10110110 => 11101010 => 12
[3,2,1,1,1,1] => 101011110 => 111001110 => 12
[3,1,1,1,1,1,1] => 1001111110 => 1010111110 => 10
[2,2,2,2,1] => 1111010 => 1111100 => 10
[2,2,2,1,1,1] => 11101110 => 11110110 => 10
[2,2,1,1,1,1,1] => 110111110 => 111011110 => 10
[2,1,1,1,1,1,1,1] => 1011111110 => 1101111110 => 10
[1,1,1,1,1,1,1,1,1] => 1111111110 => 1111111110 => 9
[10] => 10000000000 => 00000000010 => 1
[9,1] => 10000000010 => 10000000100 => 11
[8,2] => 1000000100 => 0100000100 => 9
[8,1,1] => 10000000110 => 10000001010 => 11
[7,3] => 100001000 => 001000100 => 7
>>> Load all 374 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of inversions of a binary word.
Map
Foata bijection
Description
The Foata bijection ϕ is a bijection on the set of words of given content (by a slight generalization of Section 2 in [1]).
Given a word w1w2...wn, compute the image inductively by starting with ϕ(w1)=w1. At the i-th step, if ϕ(w1w2...wi)=v1v2...vi, define ϕ(w1w2...wiwi+1) by placing wi+1 on the end of the word v1v2...vi and breaking the word up into blocks as follows.
For instance, to compute ϕ(4154223), the sequence of words is
Given a word w1w2...wn, compute the image inductively by starting with ϕ(w1)=w1. At the i-th step, if ϕ(w1w2...wi)=v1v2...vi, define ϕ(w1w2...wiwi+1) by placing wi+1 on the end of the word v1v2...vi and breaking the word up into blocks as follows.
- If wi+1≥vi, place a vertical line to the right of each vk for which wi+1≥vk.
- If wi+1<vi, place a vertical line to the right of each vk for which wi+1<vk.
For instance, to compute ϕ(4154223), the sequence of words is
- 4,
- |4|1 -- > 41,
- |4|1|5 -- > 415,
- |415|4 -- > 5414,
- |5|4|14|2 -- > 54412,
- |5441|2|2 -- > 154422,
- |1|5442|2|3 -- > 1254423.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!