Identifier
-
Mp00321:
Integer partitions
—2-conjugate⟶
Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000293: Binary words ⟶ ℤ
Values
[1] => [1] => 10 => 1
[2] => [2] => 100 => 2
[1,1] => [1,1] => 110 => 2
[3] => [2,1] => 1010 => 3
[2,1] => [3] => 1000 => 3
[1,1,1] => [1,1,1] => 1110 => 3
[4] => [2,2] => 1100 => 4
[3,1] => [2,1,1] => 10110 => 4
[2,2] => [4] => 10000 => 4
[2,1,1] => [3,1] => 10010 => 4
[1,1,1,1] => [1,1,1,1] => 11110 => 4
[5] => [2,2,1] => 11010 => 5
[4,1] => [3,2] => 10100 => 5
[3,2] => [4,1] => 100010 => 5
[3,1,1] => [2,1,1,1] => 101110 => 5
[2,2,1] => [5] => 100000 => 5
[2,1,1,1] => [3,1,1] => 100110 => 5
[1,1,1,1,1] => [1,1,1,1,1] => 111110 => 5
[6] => [2,2,2] => 11100 => 6
[5,1] => [2,2,1,1] => 110110 => 6
[4,2] => [4,2] => 100100 => 6
[4,1,1] => [4,1,1] => 1000110 => 6
[3,3] => [3,2,1] => 101010 => 6
[3,2,1] => [3,3] => 11000 => 6
[3,1,1,1] => [2,1,1,1,1] => 1011110 => 6
[2,2,2] => [6] => 1000000 => 6
[2,2,1,1] => [5,1] => 1000010 => 6
[2,1,1,1,1] => [3,1,1,1] => 1001110 => 6
[1,1,1,1,1,1] => [1,1,1,1,1,1] => 1111110 => 6
[7] => [2,2,2,1] => 111010 => 7
[6,1] => [3,2,2] => 101100 => 7
[5,2] => [4,2,1] => 1001010 => 7
[5,1,1] => [2,2,1,1,1] => 1101110 => 7
[4,3] => [4,3] => 101000 => 7
[4,2,1] => [5,2] => 1000100 => 7
[4,1,1,1] => [4,1,1,1] => 10001110 => 7
[3,3,1] => [3,2,1,1] => 1010110 => 7
[3,2,2] => [6,1] => 10000010 => 7
[3,2,1,1] => [3,3,1] => 110010 => 7
[3,1,1,1,1] => [2,1,1,1,1,1] => 10111110 => 7
[2,2,2,1] => [7] => 10000000 => 7
[2,2,1,1,1] => [5,1,1] => 10000110 => 7
[2,1,1,1,1,1] => [3,1,1,1,1] => 10011110 => 7
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => 11111110 => 7
[8] => [2,2,2,2] => 111100 => 8
[7,1] => [2,2,2,1,1] => 1110110 => 8
[6,2] => [4,2,2] => 1001100 => 8
[6,1,1] => [4,2,1,1] => 10010110 => 8
[5,3] => [3,2,2,1] => 1011010 => 8
[5,2,1] => [3,3,2] => 110100 => 8
[5,1,1,1] => [2,2,1,1,1,1] => 11011110 => 8
[4,4] => [4,4] => 110000 => 8
[4,3,1] => [4,3,1] => 1010010 => 8
[4,2,2] => [6,2] => 10000100 => 8
[4,2,1,1] => [6,1,1] => 100000110 => 8
[4,1,1,1,1] => [4,1,1,1,1] => 100011110 => 8
[3,3,2] => [5,2,1] => 10001010 => 8
[3,3,1,1] => [3,2,1,1,1] => 10101110 => 8
[3,2,2,1] => [5,3] => 1001000 => 8
[3,2,1,1,1] => [3,3,1,1] => 1100110 => 8
[3,1,1,1,1,1] => [2,1,1,1,1,1,1] => 101111110 => 8
[2,2,2,2] => [8] => 100000000 => 8
[2,2,2,1,1] => [7,1] => 100000010 => 8
[2,2,1,1,1,1] => [5,1,1,1] => 100001110 => 8
[2,1,1,1,1,1,1] => [3,1,1,1,1,1] => 100111110 => 8
[1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1] => 111111110 => 8
[9] => [2,2,2,2,1] => 1111010 => 9
[8,1] => [3,2,2,2] => 1011100 => 9
[7,2] => [4,2,2,1] => 10011010 => 9
[7,1,1] => [2,2,2,1,1,1] => 11101110 => 9
[6,3] => [4,3,2] => 1010100 => 9
[6,2,1] => [5,2,2] => 10001100 => 9
[6,1,1,1] => [4,2,1,1,1] => 100101110 => 9
[5,4] => [4,4,1] => 1100010 => 9
[5,3,1] => [3,2,2,1,1] => 10110110 => 9
[5,2,2] => [6,2,1] => 100001010 => 9
[5,2,1,1] => [4,3,1,1] => 10100110 => 9
[5,1,1,1,1] => [2,2,1,1,1,1,1] => 110111110 => 9
[4,4,1] => [5,4] => 1010000 => 9
[4,3,2] => [6,3] => 10001000 => 9
[4,3,1,1] => [5,2,1,1] => 100010110 => 9
[4,2,2,1] => [7,2] => 100000100 => 9
[4,2,1,1,1] => [6,1,1,1] => 1000001110 => 9
[4,1,1,1,1,1] => [4,1,1,1,1,1] => 1000111110 => 9
[3,3,3] => [3,3,2,1] => 1101010 => 9
[3,3,2,1] => [3,3,3] => 111000 => 9
[3,3,1,1,1] => [3,2,1,1,1,1] => 101011110 => 9
[3,2,2,2] => [8,1] => 1000000010 => 9
[3,2,2,1,1] => [5,3,1] => 10010010 => 9
[3,2,1,1,1,1] => [3,3,1,1,1] => 11001110 => 9
[3,1,1,1,1,1,1] => [2,1,1,1,1,1,1,1] => 1011111110 => 9
[2,2,2,2,1] => [9] => 1000000000 => 9
[2,2,2,1,1,1] => [7,1,1] => 1000000110 => 9
[2,2,1,1,1,1,1] => [5,1,1,1,1] => 1000011110 => 9
[2,1,1,1,1,1,1,1] => [3,1,1,1,1,1,1] => 1001111110 => 9
[1,1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1,1] => 1111111110 => 9
[10] => [2,2,2,2,2] => 1111100 => 10
[9,1] => [2,2,2,2,1,1] => 11110110 => 10
[8,2] => [4,2,2,2] => 10011100 => 10
[8,1,1] => [4,2,2,1,1] => 100110110 => 10
[7,3] => [3,2,2,2,1] => 10111010 => 10
>>> Load all 331 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of inversions of a binary word.
Map
2-conjugate
Description
Return a partition with the same number of odd parts and number of even parts interchanged with the number of cells with zero leg and odd arm length.
This is a special case of an involution that preserves the sequence of non-zero remainders of the parts under division by $s$ and interchanges the number of parts divisible by $s$ and the number of cells with zero leg length and arm length congruent to $s-1$ modulo $s$.
In particular, for $s=1$ the involution is conjugation, hence the name.
This is a special case of an involution that preserves the sequence of non-zero remainders of the parts under division by $s$ and interchanges the number of parts divisible by $s$ and the number of cells with zero leg length and arm length congruent to $s-1$ modulo $s$.
In particular, for $s=1$ the involution is conjugation, hence the name.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!