Identifier
-
Mp00095:
Integer partitions
—to binary word⟶
Binary words
Mp00269: Binary words —flag zeros to zeros⟶ Binary words
St000290: Binary words ⟶ ℤ
Values
[1] => 10 => 00 => 0
[2] => 100 => 010 => 2
[1,1] => 110 => 001 => 0
[3] => 1000 => 0110 => 3
[2,1] => 1010 => 0000 => 0
[1,1,1] => 1110 => 0011 => 0
[4] => 10000 => 01110 => 4
[3,1] => 10010 => 00010 => 4
[2,2] => 1100 => 0101 => 2
[2,1,1] => 10110 => 00100 => 3
[1,1,1,1] => 11110 => 00111 => 0
[5] => 100000 => 011110 => 5
[4,1] => 100010 => 000110 => 5
[3,2] => 10100 => 01000 => 2
[3,1,1] => 100110 => 001010 => 8
[2,2,1] => 11010 => 00001 => 0
[2,1,1,1] => 101110 => 001100 => 4
[1,1,1,1,1] => 111110 => 001111 => 0
[6] => 1000000 => 0111110 => 6
[5,1] => 1000010 => 0001110 => 6
[4,2] => 100100 => 010010 => 7
[4,1,1] => 1000110 => 0010110 => 9
[3,3] => 11000 => 01101 => 3
[3,2,1] => 101010 => 000000 => 0
[3,1,1,1] => 1001110 => 0011010 => 10
[2,2,2] => 11100 => 01011 => 2
[2,2,1,1] => 110110 => 001001 => 3
[2,1,1,1,1] => 1011110 => 0011100 => 5
[1,1,1,1,1,1] => 1111110 => 0011111 => 0
[7] => 10000000 => 01111110 => 7
[6,1] => 10000010 => 00011110 => 7
[5,2] => 1000100 => 0100110 => 8
[5,1,1] => 10000110 => 00101110 => 10
[4,3] => 101000 => 011000 => 3
[4,2,1] => 1001010 => 0000010 => 6
[4,1,1,1] => 10001110 => 00110110 => 11
[3,3,1] => 110010 => 000101 => 4
[3,2,2] => 101100 => 010100 => 6
[3,2,1,1] => 1010110 => 0010000 => 3
[3,1,1,1,1] => 10011110 => 00111010 => 12
[2,2,2,1] => 111010 => 000011 => 0
[2,2,1,1,1] => 1101110 => 0011001 => 4
[2,1,1,1,1,1] => 10111110 => 00111100 => 6
[1,1,1,1,1,1,1] => 11111110 => 00111111 => 0
[8] => 100000000 => 011111110 => 8
[7,1] => 100000010 => 000111110 => 8
[6,2] => 10000100 => 01001110 => 9
[6,1,1] => 100000110 => 001011110 => 11
[5,3] => 1001000 => 0110010 => 9
[5,2,1] => 10001010 => 00000110 => 7
[5,1,1,1] => 100001110 => 001101110 => 12
[4,4] => 110000 => 011101 => 4
[4,3,1] => 1010010 => 0001000 => 4
[4,2,2] => 1001100 => 0101010 => 12
[4,2,1,1] => 10010110 => 00100010 => 10
[4,1,1,1,1] => 100011110 => 001110110 => 13
[3,3,2] => 110100 => 010001 => 2
[3,3,1,1] => 1100110 => 0010101 => 8
[3,2,2,1] => 1011010 => 0000100 => 5
[3,2,1,1,1] => 10101110 => 00110000 => 4
[3,1,1,1,1,1] => 100111110 => 001111010 => 14
[2,2,2,2] => 111100 => 010111 => 2
[2,2,2,1,1] => 1110110 => 0010011 => 3
[2,2,1,1,1,1] => 11011110 => 00111001 => 5
[2,1,1,1,1,1,1] => 101111110 => 001111100 => 7
[1,1,1,1,1,1,1,1] => 111111110 => 001111111 => 0
[8,1] => 1000000010 => 0001111110 => 9
[7,2] => 100000100 => 010011110 => 10
[6,3] => 10001000 => 01100110 => 10
[6,2,1] => 100001010 => 000001110 => 8
[5,4] => 1010000 => 0111000 => 4
[5,3,1] => 10010010 => 00010010 => 11
[5,2,2] => 10001100 => 01010110 => 13
[5,2,1,1] => 100010110 => 001000110 => 11
[4,4,1] => 1100010 => 0001101 => 5
[4,3,2] => 1010100 => 0100000 => 2
[4,3,1,1] => 10100110 => 00101000 => 8
[4,2,2,1] => 10011010 => 00001010 => 12
[4,2,1,1,1] => 100101110 => 001100010 => 12
[3,3,3] => 111000 => 011011 => 3
[3,3,2,1] => 1101010 => 0000001 => 0
[3,3,1,1,1] => 11001110 => 00110101 => 10
[3,2,2,2] => 1011100 => 0101100 => 7
[3,2,2,1,1] => 10110110 => 00100100 => 9
[3,2,1,1,1,1] => 101011110 => 001110000 => 5
[2,2,2,2,1] => 1111010 => 0000111 => 0
[2,2,2,1,1,1] => 11101110 => 00110011 => 4
[2,2,1,1,1,1,1] => 110111110 => 001111001 => 6
[7,3] => 100001000 => 011001110 => 11
[7,2,1] => 1000001010 => 0000011110 => 9
[6,4] => 10010000 => 01110010 => 11
[6,3,1] => 100010010 => 000100110 => 12
[6,2,2] => 100001100 => 010101110 => 14
[6,2,1,1] => 1000010110 => 0010001110 => 12
[5,5] => 1100000 => 0111101 => 5
[5,4,1] => 10100010 => 00011000 => 5
[5,3,2] => 10010100 => 01000010 => 9
[5,3,1,1] => 100100110 => 001010010 => 16
[5,2,2,1] => 100011010 => 000010110 => 13
[4,4,2] => 1100100 => 0100101 => 7
[4,4,1,1] => 11000110 => 00101101 => 9
>>> Load all 283 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The major index of a binary word.
This is the sum of the positions of descents, i.e., a one followed by a zero.
For words of length $n$ with $a$ zeros, the generating function for the major index is the $q$-binomial coefficient $\binom{n}{a}_q$.
This is the sum of the positions of descents, i.e., a one followed by a zero.
For words of length $n$ with $a$ zeros, the generating function for the major index is the $q$-binomial coefficient $\binom{n}{a}_q$.
Map
flag zeros to zeros
Description
Return a binary word of the same length, such that the number of zeros equals the number of occurrences of $10$ in the word obtained from the original word by prepending the reverse of the complement.
For example, the image of the word $w=1\dots 1$ is $1\dots 1$, because $0\dots 01\dots 1$ has no occurrences of $10$. The words $10\dots 10$ and $010\dots 10$ have image $0\dots 0$.
For example, the image of the word $w=1\dots 1$ is $1\dots 1$, because $0\dots 01\dots 1$ has no occurrences of $10$. The words $10\dots 10$ and $010\dots 10$ have image $0\dots 0$.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!