Identifier
Values
([],1) => ([(0,1)],2) => ([(0,1)],2) => ([],2) => 0
([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => 1
([(0,1)],2) => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([],3) => 0
([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 2
([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => 1
([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([],4) => 0
([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => 1
([(0,2),(0,3),(3,1)],4) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => 2
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => 1
([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => 1
([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => 1
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(3,6),(4,5)],7) => 1
([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 0
([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => 1
([(0,3),(0,4),(3,2),(4,1)],5) => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10) => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10) => ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10) => 4
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => ([(3,8),(4,7),(5,6),(6,8),(7,8)],9) => 3
([(0,4),(1,4),(2,3),(4,2)],5) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => ([(3,8),(4,7),(5,6),(6,8),(7,8)],9) => 3
([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9) => 3
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => ([(4,7),(5,6),(6,7)],8) => 2
([(0,3),(3,4),(4,1),(4,2)],5) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => 1
([(0,4),(1,2),(2,4),(4,3)],5) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => ([(4,7),(5,6),(6,7)],8) => 2
([(0,4),(3,2),(4,1),(4,3)],5) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => ([(4,7),(5,6),(6,7)],8) => 2
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 0
([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10) => ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10) => ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10) => 4
([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9) => 3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => 1
([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13) => ([(0,6),(1,9),(2,8),(3,5),(3,7),(4,1),(4,7),(5,2),(5,10),(6,3),(6,4),(7,9),(7,10),(8,12),(9,11),(10,8),(10,11),(11,12)],13) => ([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13) => 6
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10) => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10) => ([(4,9),(5,8),(6,7),(7,9),(8,9)],10) => 3
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11) => ([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11) => ([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11) => 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => 0
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11) => ([(0,7),(2,9),(3,10),(4,8),(5,4),(5,10),(6,1),(7,3),(7,5),(8,9),(9,6),(10,2),(10,8)],11) => ([(5,10),(6,9),(7,8),(8,10),(9,10)],11) => 3
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11) => ([(0,6),(1,8),(2,10),(4,9),(5,1),(5,10),(6,7),(7,2),(7,5),(8,9),(9,3),(10,4),(10,8)],11) => ([(5,10),(6,9),(7,8),(8,10),(9,10)],11) => 3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The chromatic index of a graph.
This is the minimal number of colours needed such that no two adjacent edges have the same colour.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal $\mathcal I$ in a poset $P$ is a downward closed set, i.e., $a \in \mathcal I$ and $b \leq a$ implies $b \in \mathcal I$. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
to poset
Description
Return the poset corresponding to the lattice.